
User’s Manual
Rev. 1.2.1

STEMBoT 2 User’s Manual
==

Table of Contents

1.0.0.0 Introduction
1.1.0.0 The Purpose of the STEMBoT 2
1.2.0.0 How to use this manual

2.0.0.0 Hardware Overview
2.1.0.0 STEMBoT 2 Board
2.2.0.0 Battery and Charger

2.2.1.0 Charging the SB2 Battery
2.3.0.0 Remote Controller

2.3.1.0 Pairing the Remote to the SB2
2.4.0.0 Chassis and Motors

3.0.0.0 Reserved
4.0.0.0 Programming

4.1.0.0 General
4.1.1.0 Programming via Serial Communication
4.1.2.0 Programming via Mass Storage

4.2.0.0 Programmable Hardware Components
4.2.1.0 Multicolor LED
4.2.2.0 Switches
4.2.3.0 Buzzer

4.2.3.1 Playing Songs from the Board
4.2.3.2 Creating Songs using RTTTL

4.3.0.0 Liquid Crystal Display (LCD)
4.3.1.0 Colors
4.3.2.0 Text
4.3.3.0 Shapes

4.3.3.1 Drawing Rectangles
4.3.3.2 Drawing Circles
4.3.3.3 Drawing Triangles

4.4.0.0 Radio (Remote Controller)
4.4.1.0 Initialization and Configuration
4.4.2.0 Reading Remote Controller Signals

4.4.2.1 Interpreting Joystick States
4.4.2.2 Interpreting Button States

4.5.0.0 Motors
4.5.1.0 Initialization and Configuration
4.5.2.0 Speed and Acceleration
4.5.3.0 Distance and Time

4.6.0.0 UEXT Headers
4.6.1.0 General Purpose Use
4.6.2.0 Serial Communication

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.6.2.1 Reserved
4.6.2.2 Reserved
4.6.2.3 Inter-Integrated Circuit (I2C)

4.6.3.0 Plug and Play Modules
4.6.3.1 LED Module
4.6.3.2 Seven Segment Display Module
4.6.3.3 Reserved
4.6.3.4 Reserved
4.6.3.5 Reserved
4.6.3.6 Reserved
4.6.3.7 SHT21 Temperature/Humidity Sensor
4.6.3.8 MPU6050 Motion Processing Unit

4.7.0.0 Servos
4.7.1.0 Servo Calibration
4.7.2.0 Angles and Timing

5.0.0.0 Mobile Commander
6.0.0.0 Troubleshooting
7.0.0.0 Module/Class/Function Quick Reference

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

1.0.0.0 Introduction

MicroPython is an implementation of the Python programming language optimized for
embedded systems. MicroPython is written in C and includes a Python compiler and parser to
allow users to program in Python on low-level hardware.

The STEMBoT2 (SB2) uses version 1.10 of MicroPython loaded onto an STM32 32-bit
microcontroller unit (MCU), and is intended for education and embedded systems development.
Its features include an integrated LCD, speaker, several programmable push buttons, and
headers for motors, servos, and serial communication. The three ports for serial communication
use the UEXT (universal extension) layout and were included to be used with interchangeable
peripherals.

1.1.0.0 The Purpose of the STEMBoT 2

The STEMBoT 2 is the ultimate platform for learning how to program using the Python
programming language. With the proliferation of technology in our everyday lives, it’s as
important as ever to develop an understanding of programming and computer science topics.
Python is one of the most popular programming languages in fields such as data science,
financial services, and artificial intelligence, but it’s also one of the easiest and most forgiving
languages for new programmers to learn. The STEMBoT 2 takes this ease-of-use one step
further by providing an engaging and interactive programming experience.

1.2.0.0 How to use this manual

This manual should be read start to finish by those new to programming Python. The
purpose of this manual is not to teach Python, but to show how the STEMBoT 2 board works.
For those already familiar with programming in Python, this manual contains high-level function
descriptions at the end.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

2.0.0.0 Hardware Overview

The STEMBoT 2 package comes with all of the parts necessary to construct the robot as
well as a remote control and starter set of UEXT modules. The remote control and UEXT
modules come pre-assembled.

The package contains the following items:
- One STEMBoT 2 Board
- One Aluminum Chassis
- One Laser-cut Acrylic Enclosure
- Two 2-Phase Stepper Motors
- Two Rubberized Wheels
- Two Omnidirectional Wheels
- One Remote Control
- Two Plug and Play Modules

The standard configuration for the SB2 is the way the robot is assembled and delivered
to users. The PCB is inside the acrylic enclosure, which is mounted to the front of the aluminum
chassis. The stepper motors are mounted underneath the enclosure, and plugged into the motor
headers closest to each motor. The battery is affixed to the chassis via velcro tape and a plastic
cable hook attached with a screw and nylock nut. The omnidirectional wheels are attached to
the rear of the chassis, facing inwards, and at the bottom of the screw slot.

2.1.0.0 STEMBoT 2 Board

The heart of the STEMBoT 2 system is the main printed circuit board (PCB). This board
contains 5 programmable switches, a full-color LCD, a tri-color LED, two motor headers, three
UEXT headers for plug and plug functionality, and a piezoelectric buzzer. There’s also a barrel
jack for wall charging, a power indicating LED, a reset button, and a USB-B connector for
programming.

2.2.0.0 Battery and Charger

The SB2 comes with a 6-cell, 7.2V, 3800mAh Nickel-Metal Hydride (NiMH) battery , as
well as a 12V AC/DC adapter. The battery is connected to the board through an XT-60 adapter.

2.2.1.0 Charging the SB2 Battery

Without the charger connector, the SB2 will notify the user of a low battery condition if
the green LED adjacent to the charging connector starts to blink. To charge the SB2 battery,
make sure both the battery and charger are plugged in. Charging will begin automatically,

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

whether the board is turned on or not. One full charge cycle takes a maximum of 4 hours, and a
completed cycle is indicated by a solid green light on the LED.

2.3.0.0 Remote Controller

The STEMBoT 2 comes with a remote controller for wirelessly operating the robot. The
controller is a standard XBox controller design with custom internal hardware. It uses two AA
batteries, operates at 915MHz, and includes an automatic 5-minute shutdown timer. The center
green button is used for turning on the remote as well as joystick calibration. The small button at
the top next to the left button (LB) is the pairing button, and is used to pair the remote with a
STEMBoT. The remaining buttons are user-programmable, and more information can be found
in section 4.3.0.0.

2.3.1.0 Pairing the Remote Controller

To pair the remote, navigate to “Tools” on your STEMBoT 2 and then click the B button to
enter into the pairing mode. Next press the sync button on the remote, next to the left button
(LB). After it says “Successfully paired” you can then drive your bot by selecting the remote
control application.

2.3.2.0 Calibrating the Remote Controller

After successfully pairing, if either of your STEMBoT’s motors are moving on their own,
you can recalibrate your remote by holding the middle green button. Once the red LED flashing
sequence begins, move your joysticks in circular patterns until the LED flashing sequence
finishes.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.0.0.0 Programming - Introduction

Programming of the STEMBoT 2 is done through the USB port of the board and the
provided cable. With the USB plugged in, the user can view and edit Python files on the board,
and program the board through a serial communication program.

4.1.0.0 How to Program the SB2

After starting the SB2, the main menu will appear on the LCD. In this menu, there is an
option to Exit to Python REPL. With the USB cable plugged in, this option will automatically
mount a drive to your computer called PYBFLASH. The /apps folder in this drive contains the
example apps found on the board’s main menu, and can be used to store user generated
programs. Exiting to Python REPL will also allow the user to access the board’s functions
through a serial communication program.

Caution: Editing the default boot.py file can make the STEMBoT 2 inoperable.

Warning: The PYBFLASH drive on your computer must be unmounted before
the USB cable is removed. Failure to do so could corrupt data in transit, making the
STEMBoT 2 inoperable.

4.1.1.0 Programming via Serial Communication

After selecting the Exit to Python REPL option in the main menu, the SB2 can be
accessed through a serial communication program. This allows programming in Python on a
line-by-line basis. Connect to the SB2 using your serial communication program of choice.

Note: A popular program for this purpose is PuTTY, a free and open-source terminal
emulator. This program will be used throughout this document, and can be downloaded
at https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Type the following three lines, pressing enter after each one. If you are successfully
connected, this will turn on the blue LED just above the SB2 display.

import pyb
LED=pyb.LED(3)
LED.on()

Note: For information on selecting the correct port and properly configuring PuTTY for
use with the SB2, see User Guide: Setting Up Serial Communication for the STEMBoT
2, posted on the STEMBoT Inc website. Click here for the Putty Setup Guide.

==
Revision 1.2.1 : May 2021

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://docs.google.com/document/d/1voYHPUfEQASMCvQwzfTlttB6csfwMytNUotwdFih360/edit

STEMBoT 2 User’s Manual
==

4.1.2.0 Programming via Mass Storage

Python programs can be added to the SB2 by dragging and dropping files into the /apps
folder located on the PYBFLASH drive. Restarting the STEMBot 2 will allow the user to start
using their new programs right away, assuming there are no compilation or runtime errors. On
your computer, create a new file using the text editor of your choice. In this file, type the
following code:

import pyb #imports LED functions like with the above example
import uasyncio #necessary for all programs placed in mass storage

async def main(): #necessary header for all programs in mass storage
pyb.LED(1).off() #turn off red LED
pyb.LED(2).off() #turn off green LED
pyb.LED(3).on() #turn on blue LED

Program 1: Turning on the Blue LED

Save the file as “new_led.py” to the /apps folder of the PYBFLASH drive. Restart the
SB2 by pressing the blue reset button. On the main menu, the new program titled “new led”
should appear. Running this program will turn on the blue LED just above the SB2 display.

Note: Due to the nature of the boot.py file, main function headers should start with the
keyword async, for example, async def main():

Caution: When changing data on the SB2 via this method, the red LED will turn on. The
SB2 should remain plugged into the computer until this red LED turns off. Unplugging
the SB2 before the LED turns off could interrupt the data transfer and result in
unintended operation.

4.2.0.0 Programmable Hardware Components

The STEMBoT 2 board itself comes with several programmable components, including
switches, a multicolor LED, and a buzzer. These components are common among electronics
and serve a variety of purposes. For example on the SB2, the switches are used to navigate the
main menu and the LED is used as a status indicator, telling the user when programs are being
uploaded or when an error has occurred. What follows is a description of these components and
examples on how to access them through Python programming.

There are three modules used for accessing low-level functions of the SB2: pyb,
switch and buzzer. The pyb module is used for the multicolor LED, as demonstrated in
previous examples. The switch module can be used for accessing the buttons and other

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

general-purpose input/output pins (GPIOs). The buzzer module is used for accessing the on
board buzzer to produce songs and other sounds.

Note: The pyb module was developed primarily for a different board which also uses
MicroPython, while sb contains similar functions generalized for any board. When
possible, sb should be used over pyb.

4.2.1.0 Multicolor LED

The LED is accessible via the LED() function of the pyb module, and it is
programmable for 3 different colors.

This program will turn off the main LED, then cycle through
its red, green and blue components, blinking each of them
twice in an infinite loop.

import pyb #grants access to the LED class
import uasyncio #grants access to asynchronous delays (very useful!)

async def main(): #standard header for programs in the /apps folder
x=1
while x<4: #turn off LEDs 1 through 3 (all of them)

pyb.LED(x).off #turn off the x LED
x+=1 #increment x

while(True): #infinite loop
x = 1
while x<4: #cycle through RGB

led=pyb.LED(x)
led.on() #turn on LED
await uasyncio.sleep_ms(1000) #one second delay
led.off() #turn off LED
await uasyncio.sleep_ms(1000) #one second delay
led.on()
await uasyncio.sleep_ms(1000)
led.off()
await uasyncio.sleep_ms(1000)
x+=1

Program 2: Blinking the LEDs with Delays

Note: The LED is also used for several status indications: it will blink red and green if an
error has occurred and will stay solid red while data is being transferred to the SB2.

The three available colors, red, green, and blue, are numbered 1, 2, and 3, respectively,
when using the LED() function.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.2.2.0 Switches

As detailed in the Hardware Overview (section 2.1.0.0 of this guide) the SB2 has five
programmable switches. These buttons can be used by importing the machine Python module.
The switches by default are configured as inputs with their pull-up resistors enabled, as the
following code demonstrates.

pinS8=machine.Pin('E5',machine.Pin.IN,machine.Pin.PULL_UP)
pinS7=machine.Pin('B6',machine.Pin.IN,machine.Pin.PULL_UP)
pinS6=machine.Pin('B5',machine.Pin.IN,machine.Pin.PULL_UP)
pinS5=machine.Pin('B2',machine.Pin.IN,machine.Pin.PULL_UP)
pinS4=machine.Pin('F11',machine.Pin.IN,machine.Pin.PULL_UP)

The pins above are named for their label on the PCB. Their values can be read with the
value() method of the Switch() class in the switch module.

Caution: The Pin() function of the machine module can also be used to access other
pins on the SB2’s main microcontroller. Changing the function or value of certain pins
may render critical functions of the SB2 inoperable.

As an example of how the switches work, open a serial connection to the SB2. Type in
the following lines, pressing enter after each one.

from switch import Switch
button=Switch(“up”)
button.value()

Program 3: Getting the State of the Up Button

After entering the last line, False should appear on the serial terminal. This indicates that
the button is not being pressed. Now, hold down the upper left button and send the
button.value() line again. The 0 that appears on the serial terminal indicates the button is
being pressed. Sampling this value is how the buttons are used to scroll through the main
menu, but they can also be used for custom programs.

Note: In the serial terminal, the last line of code can be quickly accessed by pressing the
up button on your keyboard.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.2.3.0 Buzzer

Use of the piezoelectric buzzer requires the buzzer Python module. The buzzer is
used for creating sounds, from simple tones to more complex musical pieces

4.2.3.1 Playing Songs from the Board

The SB2 comes with several songs pre loaded. These songs can be accessed using the
play_song() function of the buzzer module.

import buzzer
buzzer.play_song(‘NationalAnthem’)

Program 4: Playing the National Anthem

A complete list of available songs can be found in the document User Guide: List of
Available Buzzer Songs.

4.2.3.2 Creating Songs using RTTTL

RTTTL('C Major Scale:d=4,o=5,b=180:c,d,e,f,g,a,b,c6') #C major scale

The first parameter is the title of the tune. The next set of parameters are d, o, and b,
which represent the default note, the default octave, and the tempo, respectively. For d, 1
represents a whole note, 2 is a half note, 4 is a quarter note, etc. The o sets the default octave
between 4 and 7, but individual notes can be programmed for different octaves if need be. The b
is the tempo given in beats per minute (bpm).

The last set of parameters defines the tune itself, and uses a duration-pitch-octave
structure for its strings. For example, the string 2f#6 would play the F# note in the sixth octave
for two intervals (defined by the d parameter).

This program uses RTTTL to play the national anthem.

import rtttl
import buzzer

async def main():

anthem=RTTTL('Anthem:d=16,o=5,b=90:2g,e,4c,4e,4g,2c6,8e6,d6,4c6,4e,4f#,2g')
buzzer.play(anthem)

Program 5: Playing the National Anthem

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.3.0.0 Liquid Crystal Display (LCD)

Liquid crystal displays (LCDs) are used virtually anywhere modern electronics are found.
From TVs to computers to cell phones, they allow people to connect with technology in an
intuitive and seamless way. The LCD on the SB2 is 320x240 pixels wide, and manipulating
pixels is done by defining their location, and then the data to be written.

The origin of the LCD, that is, where x and y are equal to 0, is at the upper left hand
corner. Functions and methods that use x and y for drawing or printing to the LCD are thus
measured from this point. For example, drawing an arrow that points to the x,y coordinate
160,120 will point to the center of the LCD (half of the total width and height).

The SB2’s LCD is accessible through the graphics and color modules. These
modules allow the user to create colors, write text to the LCD, and draw shapes.

4.3.1.0 Colors

The LCD uses standard RGB values to determine which color should be displayed.
These colors can be created by using the RGB() function of the color module. This function
takes three parameters, numbers between 0-255, corresponding to red, green, and blue..

Open a serial communication with the SB2. Input the following lines of code to
demonstrate the basic functions of the lcd module.

import graphics
import color
red=color.RGB(255,0,0)
graphics.paint(red)

Program 6: Coloring the LCD Red

This set of code will color the entire LCD with the color red. The screen() class is used
to access the LCD’s functions, so it should be instantiated before using those functions. The
paint() function of the screen() class fills the entire LCD with a given color. This can be used
to set a solid colored background or to erase the entire screen.

Note: While the entire screen will be colored by the paint() function, using the mass
storage method of programming will allow the SB2 status bar to override that effect on
the very top of the screen. For this reason, it is recommended that programs using the
LCD avoid using the upper (rewrite) pixels of the screen.

Note: An online RGB color wheel can be found here:
https://www.colorspire.com/rgb-color-wheel/

==
Revision 1.2.1 : May 2021

https://www.colorspire.com/rgb-color-wheel/

STEMBoT 2 User’s Manual
==

4.3.2.0 Text

Writing text to the LCD is done through the print() function of the graphics() module.
The print() function takes four parameters: the string to be written, the x location, the y
location, and the color. For ease of use, three additional functions are provided: printTop(),
printMiddle(), and printBottom(). These functions accept only two arguments, the string and
color, and print to the top of the LCD, the middle, and the bottom, respectively.

This program is for demonstrating the operation of the LCD by

printing "Hello, world!" in white text on a blue background.

import graphics #imports the module used for LCD operations
import color #imports the module for LCD colors
import uasyncio #imports the module used for concurrent programming

bgColor=color.RGB(0,0,255) #blue
textColor=color.RGB(255,255,255) #white

async def main(): #main function header
graphics.paint(bgColor) #fill screen with color
graphics.print("Hello, World!",40,120,textColor) #print to LCD

Program 7: Hello, world!

Text that has been written using the print() function can be erased using the erase()
function. This function accepts four arguments as well: the number of characters to be erased,
the x location, the y location, and the color. The x and y locations should be the same as those
sent to the print() function. The color should be the background color on which the characters
have been written.

For an example using the print() and erase() functions, set up a serial connection to
the SB2, and type in the following lines:

import graphics
import color
red=color.RGB(255,0,0)
black=color.RGB(0,0,0)
graphics.paint(red)
graphics.print(“Hello, world!”,40,120,black)

Now, after making sure the text has shown up, send the following command to the SB2:

graphics.erase(13,40,120,red)

This line tells the SB2 how many characters there are in “Hello, world!” (be sure to
include spaces), the placement of the text, and the background color. The erase() function
works by drawing a filled rectangle (section 4.3.3.1) around the previously printed text. If a color
other than the background color is sent, the LCD will simply print a box of that color over the
text.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

Text that is printed to the LCD will not automatically clear if new text is printed, so it’s up
to the programmer to “clean up” after printing text.

The following program is a basic second counter. It prints to the LCD how
many
seconds have passed.

import lcd #import lcd functions
import gfx #this module can be used to draw shapes
import uasyncio #import timing functions

lcdWidth=320 #define the LCD dimensions
lcdHeight=240

LCD=lcd.screen() #instantiate a screen object
bgColor=LCD.colorRGB(0,0,255) #blue
textColor=LCD.colorRGB(0xFF,0xFF,0xFF) #white

#the GFX function allows shapes and other objects to be printed with ease
graphics = gfx.GFX(lcdWidth, lcdHeight, LCD.lcd.pixel)

async def main(): #standard header
LCD.paint(bgColor) #fill the screen
x=1 #set up variable to count
while(True): #infinite loop

Print the time to the LCD: the curly brackets allow numbers to be
printed as strings when using the format() method
LCD.lcd.text("Time = {}".format(x),40,90,textColor)
Wait for 1 second to pass
await uasyncio.sleep_ms(1000)
Increment the counter
x+=1
“Erase” the previous number by filling in the same space with the
background color. The parameters are x, y, width, height, color.
Choosing 96 for the x value starts coloring in after the “Time = “
text. You’ll notice starting with 10 seconds, only the first number is
erased.
LCD.erase(5,96,90,bgColor)

Program 8: LCD Timer

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.3.3.0 Shapes

The SB2 includes functions for drawing various shapes, either filled or unfilled, to the
LCD. The functions require defined coordinates as well as the desired color of the shape.

This program demonstrates the SB2’s ability to draw shapes by drawing a green
square, red circle, and blue triangle to the middle of the screen

import graphics
import color
import uasyncio

black=color.RGB(0,0,0)
red=color.RGB(255,0,0)
green=color.RGB(0,255,0)
blue=color.RGB(0,0,255)

async def main():
graphics.paint(black)
graphics.fill_rectangle(100,60,120,120,green) #green square
graphics.fill_circle(160,120,60,red) #red circle
graphics.fill_triangle(160,60,100,180,220,180,blue) #blue triangle

Program 9: Drawing Filled Shapes

4.3.3.1 Drawing Rectangles

The two functions available for drawing rectangles are rectangle() and
fill_rectangle(). The first function draws the outline of the shape, while the second fills in the
shape with a given color. Both of these functions take five parameters: the starting x and y
coordinates, the desired width, the desired height, and the color.

4.3.3.2 Drawing Circles

The two functions available for drawing circles are circle() and fill_circle(). The first
function draws the outline of the shape, while the second fills in the shape with a given color.
Both of these functions take four parameters: the x and y coordinate for the center of the circle,
the radius of the circle, and the color.

4.3.3.3 Drawing Triangles

The two functions available for drawing triangles are triangle() and fill_triangle().
The first function draws the outline of the shape, while the second fills in the shape with a given
color. Both of these functions take seven parameters: three pairs of x and y coordinates which
define the corners of the triangle, and the desired color.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.4.0.0 Radio

The SB2 has a built-in radio for communicating with the remote control. An SB2 remote
controller can be paired with one robot at a time, and will continuously send signals while on.
The remote’s signals can be captured and interpreted using the remote module. For more
information on the remote controller, see section 2.3.0.0.

4.4.1.0 Initialization and Configuration

To access the remote control methods, the Remote() class of the remote module must be
instantiated. The RemoteData() class should also be instantiated and assigned to a variable.
The pair() method is used to pair the remote controller to the SB2.

import remote
rdata=remote.RemoteData()
r=remote.Remote()
r.pair()

In this example, rdata will hold the remote’s signal, r is the Remote() object, and r.pair()
is used to pair the remote to the SB2. The pairing button on the controller should be pressed as
soon as possible after sending the pair command.

4.4.2.0 Reading Radio Signals

Once the remote control is paired with the SB2, it starts transmitting button presses and
joystick information. These transmissions can be captured with the read() method of the
Remote() class. This method captures the most recent transmission sent by the controller, which
includes button and joystick states. The read() method accepts two parameters, the data buffer
(which should be the RemoteData() class) and a timeout (measured in milliseconds).The default
timeout is set to 2 seconds.

Note: To make the most of the remote control, signals should be captured frequently and
repeatedly. Loops (such as while loops) are a good way of accomplishing this. See the
lib/RC.py file on the SB2 for an example.

4.4.2.1 Interpreting Joystick States

After a signal has been received and placed in the rdata variable, the joystick value can
be read by accessing the relevant variables of the RemoteData() object. These variables are
ljoy_up_down, ljoy_left_right, rjoy_up_down, and rjoy_left_right. The variables represent
the joystick direction and each have a range of -127 to 128. For the left joystick, the positive
values represent up and right while the negative values represent down and left. On the right

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

joystick, the positive values represent down and right, and the negative values represent up and
left.

left_updown=rdata.ljoy_up_down
left_leftright=rdata.ljoy_left_right
right_updown=rdata.rjoy_up_down
right_leftright=rdata.rjoy_left_right

The remote will send joystick values if they are actuated in any direction. For instance, if
the left joystick is held up and to the right, the ljoy_up_down and ljoy_left_right values will be
around 128.

4.4.2.2 Interpreting Button States

Button values are returned in binary, that is, either 1 (pressed) or 0 (not pressed), and
are stored in the button variable of the RemoteData() class. These states can be determined
with a process called masking, whereby all bits but the relevant one are set to 0, and the
remaining bit is determined to be either 1 or 0. This is accomplished with the & operator.

start = rdata.buttons & remote.STRT_BIT

In this example, start will be 0 if the start button was not pressed when capturing the
signal, and will be nonzero otherwise.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.5.0.0 Motors

The SB2 comes with two stepper motors for driving the robot. Stepper motors get their
name from the fact that they move incrementally, or in steps. The standard motors for the SB2
take 200 steps to complete a full rotation.

4.5.1.0 Initialization and Configuration

Use of the two stepper motors for movement requires the sb module. The Motor() class
contains a set of methods that turn the motors on or off, and set their speed and acceleration.
There’s also a distance() function that commands the motors to move a given number of steps
at a given speed. To begin using the motors, turn them on by setting the sleep mode to false
with sleep(False), as shown in the next program.

4.5.2.0 Speed and Acceleration

The speed() method is used for setting a constant, immediate speed, or for
accelerating to a given speed in a given period of time. Passing no parameters with the speed()

method will return the current speed. Passing the speed() method one parameter (between 50
and 500) will start the motor immediately at that speed. Passing two parameters will cause the
motor to rev up to a given speed (the first parameter) in a given time (the second parameter, in

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

milliseconds). The motor can be stopped by sending 0 speed, and sending negative speeds will
cause the motor to move in reverse.

import uasyncio as asyncio
import sb

async def main():

#create the two motor objects
leftMotor=sb.Motor(1)
rightMotor=sb.Motor(2)

#motor control logic is initially disabled. Let’s enable it
leftMotor.sleep(False)
rightMotor.sleep(False)

while(True):

#left motor moves forward at 200 steps per second
#and will take 1 second to transition to that speed
leftMotor.speed(200,1000)
#right motor moves backwards at 200 steps per second
#and will take 1 second to transition to that speed
rightMotor.speed(-200,1000)

#do the above (spin) for 5 seconds
await asyncio.sleep_ms(5000)

#left motor moves backward at 200 steps per second
#and will take 1 second to transition to that speed
leftMotor.speed(-200,1000)
#right motor moves forward at 200 steps per second
#and will take 1 second to transition to that speed
rightMotor.speed(200,1000)

#do the above (spin) for 5 seconds
await asyncio.sleep_ms(5000)

Program 11: Spinning Robot

4.5.3.0 Distance and Time

The distance() method accepts 4 parameters: the distance to move (in steps), the
speed, the acceleration, and blocking mode. The speed and acceleration are the same as in the
speed() method. If the blocking mode is set to True, the code will not continue until the motor
has finished rotating. This can be useful if there are several lines of distance() methods placed
one after the other.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

4.6.0.0 UEXT (Plug-and-Play) Headers

On the STEMBoT 2, there are three headers for UEXT connections. UEXT is a standard
means of connecting to modules via three types of serial interfaces, UART, SPI, and I2C. The
header also contains pins for power (3.3V) and ground.

Figure 1: UEXT Header Pin Labels

4.6.1.0 General Purpose Use

The pins used for serial communication can also be used as GPIO (general purpose
input/output) pins. These pins can be accessed by including the pnp module, which contains
the GPIO class.

#the following statements will return a list of pins
#according to the parameter in the GPIO function
import uext
port=pnp.GPIO(“J11”)

The port object in the example above will give access to the GPIOs on header J11,
which are set as outputs by default. A parameter of “top” can also be used to access this port.
The other ports, J8 and J10 are also called “left” and “right”. The individual pins can be
accessed through the GPIO class like in the following example:

port.pin[3].on() #turn on pin 3 (SDA)
port.pin[3].off() #turn off pin 3
port.pin[3]() #returns either 1 or 0 if the pin if high or low

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

The GPIO class of the uext module also contains two functions for turning all of the pins
on or off. These functions are called allOn() and allOff(), respectively. Toggling of individual pins
can be done with the togglePin() function, which takes the target pin as its only parameter.

port.allOn() #activate all pins
port.allOff() #deactivate all pins
port.togglePin(port.pin[3]) #activate if off, deactivate if on

The pins can be also be assigned individually by importing the machine module. In the
case of J11, the header on the top of the STEMBoT 2, the pins have been defined below.

pinTX=machine.Pin('C12',machine.Pin.OUT)
pinRX=machine.Pin('D2',machine.Pin.OUT)
pinSDA=machine.Pin('B11',machine.Pin.OUT)
pinSCL=machine.Pin('B10',machine.Pin.OUT)
pinSSEL=machine.Pin('A5',machine.Pin.OUT)
pinMOSI=machine.Pin('B15',machine.Pin.OUT)
pinMISO=machine.Pin('B14',machine.Pin.OUT)
pinCLK=machine.Pin('B13',machine.Pin.OUT)

The MOSI, MISO, and CLK pins are common among all three UEXT connectors. That is,
turning one on or off does the same for all three. The SDA and SCL pins are common between
the J8 and J10 UEXT ports, and are on by default. Toggling the pins is done by using the on()
or off() functions. The value() function can be used to determine if the pin is high (1) or low
(0).

pinTX.on()
pinTX.off()
pinTx.value() #this will return 0, since it was just turned off

Note: Toggling can be done at 35.7kHz (T/2=13.3us). [Initial test]

4.6.2.0 Serial Communication

4.6.2.3 Inter-Integrated Circuit (I2C)

I2C objects are created using the machine module. Initially, the user must select the
bus and baud rate (or bit rate) of the I2C object. The SB2 has two busses for I2C
communication: bus 1 corresponds to headers J8 and J10, located below the LCD, and bus 2
corresponds to header J11, just above the LCD.

import machine

#create I2C object on bus 1 with baud rate of 9600 bits per second
i2c=machine.I2C(1,freq=9600)

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

Note: The baud/bit rate is the rate at which data will be sent serially, measured in bits
per second. A rate of 9600 is fairly common, but the SB2 is capable of transmitting at
standard rates up to 115200 bits/second.

I2C based UEXT modules can either accept commands directly or consist of a set of
registers which can be accessed individually. Writing via I2C can be done using the writeto()

function by using an integer for the address and a bytes() type value for the data to be sent. A
third boolean (True/False) parameter can be sent to include or exclude a stop condition (check
the appropriate datasheet for more information). Reading can be done with the readfrom
function, again using an integer for the address, but using a bytesarray() type buffer for the
received data. The address for both of these functions should be 7-bits, as MicroPython will
append the integer with either a binary 1 or 0 for reading or writing.

#initialize variables (these types must be used for I2C to work properly)

address=64 #address for SHT21 temperature module

fetchTemp=bytes([0xF3]) #SHT21 temperature command
tempData=bytearray(3) #3 byte buffer for SHT21 temperature data

#create I2C object (remember to import machine first)
i2c=machine.I2C(1,freq=9600)

i2c.writeto(address,fetchTemp,False) #send command to address
tempData=i2c.readfrom(address,3) #read three bytes, store in tempData

Program 12: Controlling an SHT21 PnP Module Manually

Writing and reading via I2C to a register-based device is done similarly. The two relevant
functions, writeto_mem and readfrom_mem_into require an integer for the device and
register addresses, and bytes() or bytearray() type objects for data sending and storage.

4.6.3.0 Plug and Play (PnP) Modules

The SB2 Plug and Play modules can be used by importing the pnp module in Python.
This module contains classes for controlling the available modules as well as control over the
UEXT ports as GPIOs.

4.6.3.1 LED Module

The LED module is controlled through the methods provided by the GPIO class. As well
as the on() and off() methods described in section 4.6.1.0, the GPIO class also contains allOff()
and allOn() methods which turn all of the pins off or on, respectively. This class also contains the
togglePin() method, which turns a pin on if it was previously off, and vice versa.

port.allOff() # deactivate all pins

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

port.togglePin(port.pin[3]) # activates pin 3, since it was just
deactivated

4.6.3.2 Seven Segment Display Module

The Seven Segment Display Plug and Play module can be controlled through the
SevenSegmentDisplay() class of the pnp module. This class takes one parameter, and that is the
port into which the module is plugged in (“top”, “right”, or “left”). This class contains 3 primary
methods: clear(), toggleDP(), and displayNumber(). The displayNumber() method accepts one
parameter, a number between (and including) 0 and 9, and it activates the appropriate pins to
display the passed number. The clear() method will turn off all of the LEDs, and the toggleDP()

method will turn the decimal point either on or off, depending on its previous state.

import pnp
ssd=pnp.SevenSegmentDisplay(“top”) # module is plugged into the top port
ssd.displayNumber(7) # display the number 7
ssd.clear() # clear the display
ssd.toggleDP() # turn on the decimal point (off by

default)

Program 13: Displaying the Number 7 on the SSD PnP Module

Note: Using the displayNumber() method automatically clears the previous number
display, but does not affect the decimal point.

4.6.3.8 Temperature/Humidity Sensor

This module uses an SHT21 sensor for detecting temperature and relative humidity. The
SB2 automatically converts data to either Celsius or Fahrenheit for temperature, and
percentage (from 0% to 100%) for relative humidity. Users can access these measurements
through the SHT21()class of the pnp module.

The SHT21()class accepts only one argument, either “top”, “right”, or “left”, depending
on the port the module is plugged into. The class contains three main methods: getTempC(),
getTempF(), and getRH(), which return the temperature in Celsius, the temperature in
Fahrenheit, and the relative humidity, respectively. None of these methods accept parameters.

Note: Be aware that all three of the methods included in the SHT21() class use a 100ms
delay.

4.6.3.9 Motion Tracking Sensor (Accelerometer/Gyroscope)

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

The motion tracking sensor uses an MPU6050 chip which has an on-board
accelerometer and gyroscope to read acceleration and angular velocity, respectively.
Acceleration is measured in meters per second squared, and angular velocity is measured in
degrees per second. The conversion to these units is performed automatically by the SB2
through use of the MPU6050() class of the pnp module. This class only accepts one
argument, either “top”, “right”, or “left”, depending on which port the module is plugged into.

The two primary methods available through this class are getAcceleration() and
getAngularVelocity(). These take no parameters and return three values, the
acceleration or angular velocity along the x, y, and z axes.

Figure 2: MPU-6050 Orientation, from InvenSense

Example (serial):
import pnp
mpu=pnp.MPU(“top”) #make sure the module is plugged into the top port
ax,ay,az=mpu.getAcceleration() #place values in ax, ay, and az
gx,gy,gz=mpu.getAngularVelocity() #place values in gx, gy, and gz

Program 13: Getting Motion Data from MPU6050 PnP Module

Since this device, like all measuring devices, is imperfect, it will not always return 0 when
getting measurements, even if it’s perfectly still. One way to compensate for this is by taking an
average of several or many readings in your code and subtracting those averages from your
desired measurements. See the PnP_MPU6050 sample code for an example.

Note: When reading acceleration, there should always be one axis that reads around
9.8m/s^2. This is caused by acceleration due to Earth’s gravity.

4.7.0.0 Servos

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

The SB2 comes with a 3x4 pin header to be used with servos. From left to right, the pins
are the control pin, the power (5V) pin, and the ground (0V) pin. Servos, unlike motors, are used
for precise control, typically between 0 and 180 degrees. This is accomplished by sending a
pulse-width modulated (PWM) signal which the servo can interpret as a specific angle.

The servos connected to the SB2 can be accessed by importing the pyb module, and
using the Servo() class. This class contains three methods: calibration(), angle(), and
speed().

4.7.1.0 Calibration Procedure

Servos require calibration to ensure that programs will operate as intended. This is due
to both the wide array of servos available on the market, as well as variations between servos of
the same type. On the SB2, calibration is done with the calibration() function. This function takes
3 parameters: the minimum pulse width, the maximum pulse width, and the center pulse width
(for a 0 degree angle). These values are measured in microseconds and should be provided
with the servo’s datasheet. Regardless, calibration should be completed to achieve optimal
results.

Note: Although the SB2 comes pre-calibrated, it is highly recommended that this
procedure is followed for any new servo. Once new calibration values are found, they
should be recorded for repeated use.

1. Create a serial connection between your computer and the SB2.
2. Without connecting any servo arms, connect the servo to the top row of pins . This is

servo 1 in the SB2 firmware.
3. Using a serial terminal, use the following commands to access the servo:

a. import pyb
b. S1=pyb.Servo(1)

4. S1 is the new servo object. Calibrate the object with the following command where the
three values are given by the servo’s datasheet:

a. S1.calibration(minimumPulseWidth,maximumPulseWidth,centerPulseWidth)
5. This calibration procedure assumes the center pulse width is accurate. Center the servo

by entering the following command:
a. S1.angle(0)

6. Attach a servo arm so it is oriented parallel to one of the servo’s dimensions. (For
example, if the servo is longer than it is wide, attach the arm along the long part of the
servo.)

7. Send the following command:
a. S1.angle(-90)

8. If the servo arm has moved 90 degrees from its original (center) position, the first
parameter of the calibration() function is correct. If not, either increase (if the arm moved

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

too far) or decrease (if the arm hasn’t moved far enough) the value of the first parameter.
Repeat steps 7 and 8 until the servo arm is 90 degrees from the center position.

9. Repeat step 5 to re-center the servo arm.
10. Send the following command:

a. S1.angle(90)
11. If the servo arm has moved 90 degrees from its original (center) position, the second

parameter of the calibrate() function is correct. If not, either increase (if the arm hasn’t
moved far enough) or decrease (if the arm moved too much) the value of the first
parameter.

12. Repeat steps 10 and 11 until the servo arm has moved 90 degrees from the center
position. Record the final values for use with the servo.

Note: The servo used for testing this procedure (smraza S51) gave good results with
S1.calibration(550,2475,1500)

4.7.2.0 Setting Angles

As demonstrated in the calibration procedures, setting angles can be done with the
angle() function. This function will accept parameters between -90 and 90 which determines the
servo angle, with 0 being the center position. Using the function without parameters returns the
current angle of the servo.

6.0.0.0 Troubleshooting

Sometimes technology doesn’t work as expected. This section covers common
troubleshooting issues involving the hardware and software, as well as issues based on your
operating system. For any other issues not found here, please contact support@stembots.com.

6.1.0.0 Power/Charging System

Checking the fuse: Take the top of the enclosure off of the SB2. Plug in the battery and no other
power source, and turn on the SB2. With a DMM, check the voltage across capacitor C54. If it is
0V, the fuse likely needs to be replaced.

6.2.0.0 Motors
6.3.0.0 Troubleshooting by Operating Systems

6.3.1.0 Linux

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

Creating/editing .py files in Linux: In terminal, type “findmnt” to determine the SB2 filepath. As a
root user, type “mount -o remount,rw /PATH” where path is the previously identified filepath. This
will change the SB2 from a read-only filesystem to a read/write filesystem.

Finding serial port in Linux: dmesg | grep tty

6.3.2.0 MacOS

MacOS creates hidden files on external drives. Oftentimes this will fill up the SB2 memory. TO
clean it up, look for any files prepended with a period and delete them.

6.4.0.0 Notes for REPL -- Special Key Combinations

CTRL-A - enter REPL mode

Enter raw REPL mode. Raw REPL is like REPL except for the following:
- there is no >>> prompt
- characters which are typed are not echoed back
- there is no auto indent (i.e. ... prompt)
This mode is extremely convenient for programs (as opposed to humans) to use.

CTRL-B - enter normal REPL mode

Gets you back to what's referred to as a the friendly REPL in the code. This is the REPL that
you normally see (with the >>> prompt).

CTRL-C - interrupt a running program

Can be used to interrupt a running program. Try entering the following program at the REPL:
CODE: SELECT ALL

for i in range(1000000):
print(i)

You see you probably don't want to wait for it to reach 1000000. So you can press Control-C:

19243
19244
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

KeyboardInterrupt:
>>>

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

CTRL-D - soft reset

This basically reset the python interpreter without resetting the processor. It wipes any progam
in memory and reruns boot.py and main.py and then returns you to the REPL. So for example, if
when you first boot up the board and you use the dir() command:

>>> dir()
['__name__', 'pyb']

Now create some variables and then redo the dir() command:

>>> i = 1
>>> j = 23
>>> x = 'abc'
>>> dir()
['j', 'x', '__name__', 'pyb', 'i']
>>>

dir() shows that you have some variables in the local scope. Press Control-D and they all get
wiped out:

PYB: sync filesystems
PYB: soft reboot
MicroPython v1.5-51-g6f70283-dirty on 2015-10-30; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>> dir()
['__name__', 'pyb']
>>>

CTRL-E - paste mode

This allows you to paste in functions from your computer without getting messed up by the
auto-indent facility. So suppose I have the following function:

def foo():
print('This is a test to show paste mode')
print('Here is a second line')

foo()

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

At the regular REPL if you tried to paste that in you'd see something like this:

>>> def foo():
... print('This is a test to show paste mode')
... print('Here is a second line')
... foo()
...
Traceback (most recent call last):
File "<stdin>", line 3

IndentationError: unexpected indent

Whereas with paste mode you'd see:

paste mode; CTRL-C to cancel, CTRL-D to finish
=== def foo():
=== print('This is a test to show paste mode')
=== print('Here is a second line')
=== foo()
===
This is a test to show paste mode
Here is a second line
>>>

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

7.0.0.0 Module/Class/Function Quick Reference

The purpose of this section is to provide a high level overview of the SB2 API’s functions
for quick reference. Modules need to be included in the code using the import statement.
Classes can be accessed by appending the module with the class name using a period.
Methods and functions can be accessed the same way. The follow program demonstrates the
use of modules, classes, and functions to turn on the red (1) and green(2) LEDs:

import pyb
redLED=pyb.LED(1)
redLED.on()
pyb.LED(2).on()

Be mindful of both spelling and capitalization; the names of the class, methods,
functions, and objects must be used exactly as seen below. Python ignores whitespaces within
lines of code, so for example if in the program above you replaced the second line with
“redLED = pyb.LED(1)” it would function exactly the same. The names of objects
however must be kept in tact, that is, no spaces. The line “red LED=py b.LE D(1)” would
not work.

(Module) - pyb
(Class) - LED(i) - Used to access the tri-color LED. The parameter i can be either 1, 2, or
3 to access the red, green, and blue LEDs, respectively.

(Method) - on() - Turns the LED on
(Method) - off() - Turns the LED off

(Module) - switch
(Class) - Switch(s) - Used to access the five programmable buttons on the SB2. Allowed
values for parameter s are ‘a’, ‘b’, ‘c’, ‘up’, and ‘down’, to access the respective buttons.

(Method) - value() - Returns True if the associated button is pressed, and False
otherwise

(Module) - color
(Function) - RGB(r, g, b) - Returns a color object that can be used with the graphics
module. The parameters are integer values of 0-255 which represent the amount of red,
green, and blue in the returned color.
(Object) - RED, GREEN, BLUE, WHITE, BLACK - Predefined colors

(Module) - graphics

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

(Function) - paint(color) - Fills the LCD with a given color. Colors can be created using
the RGB() function of the color class
(Function) - print(string, x, y, color) - Prints the given string to the LCD starting at the
x,y coordinate. The new text will be the given color.
(Function) - printTop(string, color) - Prints the given string at the top of the LCD with
the given color.
(Function) - printMiddle(string, color) - Prints the given string to the middle of the LCD
with the given color.
(Function) - printBottom(string, color) - Prints the given string to the bottom of the LCD
with the given color.
(Function) - erase(i, x, y, o) - Fills the space starting x pixels from the left of the screen
and y pixels from the top of the screen the given color o. The integer i is the number of
characters that will be replaced with the color (used to “erase” text)
(Function) - line(x1, y1, x2, y2, color) - Draws a line with the given color from x1,y1 to
x2,y2. THe line has a width of 1 pixel.
(Function) - rectangle(x, y, width, height, color) - Draws a rectangle starting at
coordinate x,y with a width and height of w and h. The edges of the rectangle are 1 pixel
wide and the color o.
(Function) - fill_rectangle(x, y, width, height, color) - Draws a rectangle starting at
coordinate x, y with a given width and height. The shape is filled in with the given color.
(Function) - circle(x, y, r, color) - Draws a circle centered around coordinate x, y with a
given radius r. The circle will be drawn with the given color and have a thickness of 1
pixel.
(Function) - fill_circle(x, y, r, color) - Draws a circle centered around coordinate x, y
with a radius r. THe circle will be filled in with the given color.
(Function) - triangle(x1, y1, x2, y2, x3, y3, color) - Draws a triangle with the three
points at the given coordinates. The triangle is drawn with the given color and has an
edge thickness of 1 pixel.
(Function) - fill_triangle(x1, y1, x2, y2, x3, y3, color) - Draws a triangle with the three
points at the given coordinates. The triangle is filled in with the given color.
(Function) - arrow(angle, x, y, length, color) - Draws an arrow with a given color
pointing to a given x,y coordinate with a given length. The function accepts angles in 45
degree increments (i.e., 0, 45, 90, 135, etc.).
(Object) - lcdheight - The height of the LCD in pixels.
(Object) - lcdwidth - The width of the LCD in pixels.

(Module) - utime
(Function) - sleep(s) - Delay of s seconds
(Function) - sleep_ms(s) - Delay of s milliseconds
(Function) - sleep_us(s) - Delay of s microseconds

(Module) - sb

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

(Class) - Motor(x) - Used for interacting with the motors. Accepts either 1 or 2 as a
parameter.

(Method) - sleep(bool) - Forces the associated motor to enter or exit sleep
mode. True sets the motor to sleep and False wakes it up. Leaving the parameter
blank returns either True or False depending on the sleep state.
(Method) - brake_mode(bool) - Sets the motor brake mode. If true, the motor
will “brake” at the end of movement, otherwise the motor will be allowed to roll.
Leaving the parenthesis blank will return either True or False depending on the
state of the brake mode.
(Method) - speed(x) - Sets the stepper motor to move continuously. Values
above 500 may cause the motor to stall. Leaving the parenthesis blank will return
the current speed.
(Method) - distance(steps, speed, acceleration, blocking) - Causes the motor
shaft to rotate a given number of steps at a certain speed. Speeds above 500
may cause the motor to stall. Acceleration is the time it takes to wind up to the
given speed (a value of 10 is recommended for most purposes). Setting blocking
to True prevents the next line of code from being executed until the motor
finishes moving.
(Method) - stop() - Causes the motor to stop moving.

(Function) - setWheelDiameter(x) - Sets the wheel diameter in millimeters. This value is
used for distance conversions. Default is 85.
(Function) - getWheelDiameter() - Returns the current wheel diameter in millimeters.
(Function) - inches_to_steps(x) - Converts the given number of inches to steps based
on the wheel’s diameter. Used for the distance() method.
(Function) - mm_to_steps(x) - Converts the given number of millimeters to steps based
on the wheel’s diameter. Used for the distance() method.
(Function - decirevs_to_steps(x) - Converts the given number of decirevs to steps.
Used for the distance() method.
(Function) - steps_to_inches(x) - Converts a given number of steps to inches based on
the wheel’s diameter.
(Function) - steps_to_mm(x) - Converts the given number of steps to millimeters based
on the wheel’s diameter.
(Function) - steps_to_decirevs(x) - Converts the given number of steps to decirevs.

(Class) - Servo(x) - Used for programming the servo ports.
(Method) - pulse_width(x) - Sets the pulse width of the servo signal to the given
number of microseconds

(Module) - remote
(Class) - Remote() - Used to access remote controller methods

(Method) - pair() - Pairs the SB2 with a remote controler

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

(Method) - read(RemoteData, timeout) - Reads the current radio data and puts
the information into a RemoteData object. If data cannot be read before the
timeout, nothing happens.

(Class) - RemoteData() - Used to store remote controller data
(Object) - buttons - A length 15 bytearray object that stores data on which
remote controller buttons are being pressed. Used with bitwise operators and the
“_BIT” objects to determine the state of single buttons.
(Object) - ljoy_up_down - Contains a numerical value representing the up/down
position of the left joystick.
(Object) - ljoy_left_right - Contains a numerical value representing the left/right
position of the left joystick.
(Object) - rjoy_up_down - Contains a numerical value representing the up/down
position of the right joystick.
(Object) - rjoy_left_right - Contains a numerical value representing the left/right
position of the right joystick.

(Object) - SLCT_BIT, STRT_BIT - Numerical value representing the select and start
buttons. To be compared with the RemoteData().buttons object.
(Object) - L1_BIT, L2_BIT, L3_BIT, R1_BIT, R2_BIT, R3_BIT - Numerical value
representing the left and right buttons (L3 and R3 are the joystick buttons). Used in
conjunction with the RemoteData().buttons object.
(Object) - DPAD_UP_BIT, DPAD_RT_BIT, DPAD_DN_BIT, DPAD_LT_BIT - Numerical
value representing the buttons on the directional pad. Used in conjunction with the
RemoteData().buttons object.
(Object) - A_BUTTON, B_BUTTON, X_BUTTON, Y_BUTTON - Numerical values
representing the colored buttons. Used in conjunction with the RemoteData().buttons
object.

(Module) - pnp
(Class) - GPIO(position) - Used to access the UEXT port as pins (also for the LED plug
and play modules). Accepts one parameter, either “top”, “left”, or “right”.

(Method) - togglePin(pin) - Toggles the given pin between on and off states.
(Method) - allOn() - Turns on all of the pins.
(Method) - allOff() - Turns off all of the pins.

(Class) - SevenSegmentDisplay(position) - Used to access the methods of the seven
segment display (SSD) plug and play module. Accepts one parameter, either “top”, “left”,
or “right”.

(Method) - clear() - Turns off all of the LEDs on the SSD.
(Method) - displayNumber(x) - Displays a given number. Only integers from 0 to
9 are allowed.
(Method) - toggleDP() - Toggles the decimal point.

==
Revision 1.2.1 : May 2021

STEMBoT 2 User’s Manual
==

(Class) - SHT21(position) - Used to access the methods of the SHT21
temperature/humidity sensor plug and play module. Accepts one parameter, either “top”,
“left”, or “right”.

(Method) - getTempC() - Returns the current temperature in degrees Celsius.
(Method) - getTempF() - Returns the current temperature in degrees Fahrenheit.
(Method) - getRH() - Returns the relative humidity in percent.

(Class) - MPU6050(position) - Used to access the methods of the MPU6050
accelerometer/gyroscope plug and play module. Accepts one parameter, either “top”,
“left”, or “right”.

(Method) - getAcceleration() - Returns x, y, and z axis acceleration data in
meters per second squared.
(Method) - getAngularVelocity() - Returns angular velocity about the x, y, and z
axes. Data is returned in units of degrees per second.

(Class) - OPT3001(position) - Used to access the method of the OPT3001 plug and
play module. Accepts one parameter, either “top”, “left”, or “right”.

(Method) - getLux() - Returns the ambient brightness in Lux.

==
Revision 1.2.1 : May 2021

