
CEENBoT-API Programming Fundamentals
Quick CEENBoT-API Programming Examples

CEENBoT v2.21 – '324 Platform

written by Jose Santos,
CEENBoT-API Creator and Developer

Current as of v1.09.000R
Rev 1.02

University of Nebraska, Lincoln (Omaha Campus)
© 2011, University of Nebraska Board of Regents



(Blank)



University of Nebraska-Lincoln

Introduction

About This Document

The purpose of this document is to provide some fundamental  examples with some common 
tasks that can be achieved with the CEENBoT-API, which includes such fundamental tasks as  delays, 
motion control, and environment sensing via the CEENBoT's infra-red  bump sensors.  The goal of this 
document is to simply point you to some key API functions you'll want to immediately get to know when 
writing CEENBoT-API programs.

Prerequisites

This document assumes the following:

• You  have  a  basic  working  knowledge  of  programming  in  C.   Teaching  you  about  the  C 
programming language is beyond the scope of this document.

• You have  successfully  read  through  to  completion the  CEENBoT-API:  Getting  Started 
manual. This is very important.  

The manual  discusses how to set  up your  programming development environment/tools (i.e., 
AVR Studio 4), takes you through the steps of compiling a CEENBoT-API program, and the steps 
required to upload it to your CEENBoT.  Users are expected to have gone through this procedure.

The Getting Started manual, along with other CEENBoT-API documentation can be found at:

http://ceenbot.digital-brain.info

• You have the necessary hardware: Windows-based PC, CEENBoT, and AVR-ISP programmer.

3

http://ceenbot.digital-brain.info/


CEENBoT-API: Programming Fundamentals  (Rev. 1.02)

Implementing Delays

One of the tasks for the CEENBoT programming exercise requires that you implement a  delay 
into your program.  A delay will cause your program to “pause” for a given amount of time (which  you 
specify) before program execution continues.

For example, you may wish for your CEENBoT to delay for 5 seconds after power up, to give you time to 
set your CEENBoT down on the floor before its wheels start spinning.

There's an API function called TMRSRVC_delay(), which allows you to do just that.  The function takes a 
single argument (or value) which specifies how long you wish to delay.  For example, if you wish to wait 5 
seconds, then you invoke the function in your program as:

TMRSRVC_delay( 5000 );

Why  5000?   Because  the  value  given  to  the  function  is  in  units  of  milliseconds (NOT  seconds). 
Therefore, 5 seconds = 5 * 1000 = 5000 milliseconds.

Here's a super-simple example, on how you can use the delay function.  Don't worry about everything 
else – the main point here is to convey an the idea:

// EXAMPLE 1:

#include “capi324v221.h”

void CBOT_main( void )

{

    // Open the LCD for use (so we can print messages).

    LCD_open();

    // Display a message.

    LCD_printf( “Hello, Dolly!\n” );

    // Wait 2 seconds.

    TMRSRVC_delay( 2000 );

    // Display another message.

    LCD_printf( “How are you?\n” );

    // Infinite loop.

    while( 1 );

} // end main()

This program starts by printing the message “Hello, Dolly” on the display.  Then, nothing is going to 
happen for  2 seconds (2000 milliseconds).  After that, another message prints, this time being 
“How are you?”.  After that, the program gets stuck in an infinite loop.

You can insert delays almost anywhere in your program and anytime you wish your CEENBoT to wait for 
some time before it does the next thing.  For example, you could have your CEENBoT start by moving 
forward, and then, wait 5 seconds, and then move back, or turn, etc.  The delay function allows you to do 
things  like  that.   The  only  caveat is  that  the  maximum delay  possible  is 30 seconds (or  30000 
milliseconds) – if you want longer delays than that, then you can call TMRSRVC_delay() multiple times 
back-to-back, or by using one of C's several looping constructs.

4



University of Nebraska-Lincoln

Moving the CEENBoT

Fundamental Concepts

The next  obvious fundamental task you will be required to do is to get your CEENBoT moving. 
The wheels of your CEENBoT are each attached to what is called a stepper motor.  They're called that 
because the motors move forward (or back) in small incremental units called “steps”.

The motors that are installed on the CEENBoT have 200 steps for  one revolution, so that each step 
rotates the wheel 1.8-degrees (that's 360/200 = 1.8). 

The reason you need to be aware of this “stepping” system is because you can't tell the CEENBoT to  
move it's wheels, say 5-ft, or 10-inches, or 2-cm.  The CEENBoT doesn't understand those units – 
the CEENBoT only understands “steps”.  So to get your CEENBoT to travel a certain distance, you have  
to tell  it  how many steps it  should  rotate its wheels instead.  Turn to the next page to read about 
fundamental motion functions.

Supplementary Note – It is possible to create a relation between “steps” and 
“distance”.  Recall the circumference formula:

C=2 r

If you measure the radius r of the wheel very carefully, you can compute the 
circumference C .  Then, you can compute how far each “step” moves you (i.e., the 
distance-per-step) by using the conversion:

d step =
C
200

Finally, if D represents the total distance you want to travel, the “number of steps” 
required to travel that distance can be computed as:

N steps=
D
d step

5



CEENBoT-API: Programming Fundamentals  (Rev. 1.02)

The Motion Functions

The CEENBoT-API offers a dozen or so functions that allow you to get your CEENBoT to move in a  
variety of ways.  However, this 'multitude' of functions in the API reference documentation manual can be 
a bit overwhelming the first time around.  It turns out that most of the motion tasks you can perform with 
your CEENBoT can be accomplished with the following functions:

• STEPPER_move_stwt() (the step-and-wait function)
• STEPPER_move_stnb() (the step-no-block function)
• STEPPER_stop() (can only be used in conjunction with STEPPER_move_stnb())
• STEPPER_wait_on() (can only be used in conjunction with STEPPER_move_stnb())

The first two motion functions are the most important – these are the ones that cause the CEENBoT 
wheels to move.  These two functions allow you to independently control the left and right wheels/motors 
and set the direction, speed and acceleration of each.

Here's our first example – it causes the CEENBoT to move forward a finite distance, then turn, 
and move forward some more before coming to a stop.  Study the following code sample carefully – the 
key lines are numbered in parenthesis for the discussion that follows on the next page:

// EXAMPLE 2:

#include "capi324v221.h"

void CBOT_main( void )

{

    STEPPER_open();     // Open STEPPER module for use. (1)

    

    // Move BOTH wheels forward.

    STEPPER_move_stwt( STEPPER_BOTH, (2)

        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF,   // Left

        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF ); // Right

        

    // Then TURN RIGHT (~90-degrees)...

    STEPPER_move_stwt( STEPPER_BOTH, (3)

        STEPPER_FWD, 150, 200, 400, STEPPER_BRK_OFF,   // Left

        STEPPER_REV, 150, 200, 400, STEPPER_BRK_OFF ); // Right

        

    // Move BOTH wheels forward.

    STEPPER_move_stwt( STEPPER_BOTH, (4)

        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF,   // Left

        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF ); // Right

        

    // Infinite loop!

    while( 1 ); (5)

    

} 

6



University of Nebraska-Lincoln

In line (1) we start up the module that contains all the stepper-related functions.  This is required.

Then in line (2) we initiate a motion.  Note that this is a single line, with its parameter values spread over 3 
consecutive lines separated by commas – so keep in mind this constitutes a single “function call”, which 
I've replicated below:

STEPPER_move_stwt( STEPPER_BOTH,
        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF,   // Left
        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF ); // Right

STEPPER_BOTH indicates that the parameters for  both the left and right motors are valid.  Sometimes you 
only want to 'affect' a single motor, but you still have supply values for both left and right.  In this case we  
can specify  STEPPER_LEFT, or  STEPPER_RIGHT, but here we want  both motors to be affected, so we use 
STEPPER_BOTH.

Then, what follows are the  parameters for the LEFT and RIGHT motors (one on each line).  The first 
parameter represents the  direction the wheel is to move:  STEPPER_FWD (move forward), or  STEPPER_REV 
(move in reverse).  Then, the distance the wheel is to move – here we specified 1000 steps.  This is 
followed by the speed the motor is to move – here we specified 200 steps-per-second.  After that, 
we specify the acceleration of 400 steps/sec2.  Finally, the brake mode – STEPPER_BRK_OFF means we 
want to keep the motor “brakes”  dis-engaged once the motion completes – that is, after the wheel has 
turned all 1000 steps.  If you want to engage the brakes, you would specify STEPPER_BRK_ON.

So in summary, the line above (which represents line (2) on our program sample) says to move  both 
wheels  forward,  for  1000 steps  at  a  speed  of  200 steps-per-second  and  acceleration  of  400 
steps/sec2; furthermore, we want the brakes off when this command completes.

Lines (3) and (4) perform the same task.  The only difference is that in line (3) we turn right by 
making the left wheel move forward, and the right wheel move in reverse – also note that each wheel is 
moving for 150 steps.  This gives me approximately a 90-degree turn, but your results may vary.

STEPPER_move_stwt( STEPPER_BOTH,
        STEPPER_FWD, 150, 200, 400, STEPPER_BRK_OFF,   // Left
        STEPPER_REV, 150, 200, 400, STEPPER_BRK_OFF ); // Right

Then, in line (4), we move forward again for the  same distance (1000 steps), same speed, and same 
acceleration.

STEPPER_move_stwt( STEPPER_BOTH,
        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF,   // Left
        STEPPER_FWD, 1000, 200, 400, STEPPER_BRK_OFF ); // Right

Note that  lines (2),  (3)  and (4) execute sequentially.   Line (3) will  NOT execute until  line (2) 
finishes – that is, until all 1000 steps have occurred.  Line (4) will NOT execute until line (3) finishes – that  
is, until all 150 steps have occurred, etc.  This is why  STEPPER_move_stwt() is called the  step-and-wait 
function.   It  instructs the wheels to step a given amount,  and the program will  wait until  this motion 
completes.   Make sure you keep this idea in mind because the next  example shows the alternative 
scenario – what if, instead of step-and-wait, we just step-and -don't-wait?

Let's look at the example on the next page to see how we can achieve this scenario:

7



CEENBoT-API: Programming Fundamentals  (Rev. 1.02)

This next example shows how you would use the STEPPER_move_stnb() function (this is the step-
no-block function).  Imagine that we need to get the CEENBoT moving, but AS SOON as you get the 
robot moving, you need to begin “scanning” for possible objects in the way?

You can't do this with step-and-wait because these functions DO NOT let you do anything else  until the 
motion completes.  We need an alternative...

STEPPER_move_stnb() is precisely for this kind of scenario.

// Example 3:

#include "capi324v221.h"

void CBOT_main( void )

{

  STEPPER_open(); // Open STEPPER module for use.

    // Move forward.

    STEPPER_move_stnb( STEPPER_BOTH, (1)

        STEPPER_FWD, 5000, 200, 450, STEPPER_BRK_OFF,   // Left

        STEPPER_FWD, 5000, 200, 450, STEPPER_BRK_OFF ); // Right

        

    // <<< ...do something else here... >>> (2)

    

    // Wait **HERE** for motion to complete on BOTH motors

    // before we do anything else.

    STEPPER_wait_on( STEPPER_BOTH ); (3)

    

    // Move back.

    STEPPER_move_stnb( STEPPER_BOTH, (4)

        STEPPER_REV, 5000, 200, 450, STEPPER_BRK_OFF,   // Left

        STEPPER_REV, 5000, 200, 450, STEPPER_BRK_OFF ); // Rev.

    // <<< ... maybe do something else here... >>> (5)

    

    // Wait **HERE** for motion to complete on BOTH motors

    // before we do anything else.

    STEPPER_wait_on( STEPPER_BOTH ); (6)

    

    // Infinite loop!

    while( 1 );

        

} 

Line  (1)  starts  the  motion.   Both  steppers  move  forward,  for  5000  steps  at  a  speed  of  200,  and  
acceleration of 450.  We also state that the brakes should stay OFF when motion completes.  Now, unlike  
STEPPER_move_stwt() (step-and-wait), here, we're using the step-no-block version.  This means, as soon 
as the wheels begin to move, execution moves to whatever you may have after that.  This “whatever” is 
indicated in line (2).

Then comes an important function.  STEPPER_wait_on().  This function is used to hold execution of the 
program to continue any further, until either the LEFT, RIGHT or BOTH stepper motors complete their  
motion in their entirety.  We need this to prevent line (4) from starting while the motors are still trying to 
finish based on what was instructed in line (1).

8



University of Nebraska-Lincoln

When the motion completes,  then  execution moves to  line (4),  and  now the motors  begin  to  move 
backward.  IMMEDIATELY after that, whatever code you have in line (5) gets executed also.

We then use line (6) to hold off again, and wait for the previous motion to complete.

The program concludes by entering the infinite while() loop.

9



CEENBoT-API: Programming Fundamentals  (Rev. 1.02)

Reacting to the Bump Sensors

The CEENBoT comes equipped with two forward Infra-Red (IR) bump sensors.  The CEENBoT-
API provides a function to “query” the state of these sensor to determine if an object is blocking a sensor  
or not.  The user can then use the state obtained from this query to take the appropriate action (e.g., if left  
blocked, then go around object), etc.  The key function that allows us to do this (query bump sensor state) 
is the ATTTINY_get_IR_state() as showcased in the example below that follows.  This function returns 
'TRUE' (a non-zero value), if the state of the requested IR sensor is active (i.e., being blocked).

The following program causes the CEENBoT to turn right 90-degrees if the right bump sensor is triggered, 
and left 90-degrees if the left bump sensor is triggered.

// Example 4:

#include "capi324v221.h"

void CBOT_main( void )

{

    STEPPER_open();

    

    // We do this repeatedly for ever.

    while( 1 )

    {

    

        // Wait a bit...

        TMRSRVC_delay( 125 );

        

        // If LEFT sensor is triggered then move LEFT 90-degrees.

        if ( ATTINY_get_IR_state( ATTINY_IR_LEFT ) == TRUE ) (1)

        {

            // Turn LEFT...

            STEPPER_move_stwt( STEPPER_BOTH,

                STEPPER_REV, 150, 200, 400, STEPPER_BRK_OFF,    // Left

                STEPPER_FWD, 150, 200, 400, STEPPER_BRK_OFF );  // Right

                

        } 

        

        // Otherwise, if the RIGHT sensor is triggered, then move RIGHT 90-degrees.

        else if ( ATTINY_get_IR_state( ATTINY_IR_RIGHT ) == TRUE ) (2)

        {

            // Turn RIGHT...

            STEPPER_move_stwt( STEPPER_BOTH,

                STEPPER_FWD, 150, 200, 400, STEPPER_BRK_OFF,    // Left

                STEPPER_REV, 150, 200, 400, STEPPER_BRK_OFF );  // Right

                

        }

        

    } // end while()

    

} // end CBOT_main()

10



University of Nebraska-Lincoln

The first thing to notice about this program is that except for the first line, the entire program is inside of a 
while loop, which will execute repeatedly forever.

At the beginning of the while loop we introduce a little “delay” to give the CEENBoT time to respond to the 
sensor requests afterwards.  This also allows us to control how quickly the loop runs – a 125ms delay 
means the contents in the while loop will execute approximately 8 times per second.

In the line labeled (1), we call the ATTINY_get_IR_sensor() function.  This function reads the state of the 
bump sensors and returns a boolean value of type BOOL, which will be equal to TRUE (a non-zero value), if 
an object happens to be blocking the IR sensor, and FALSE (a zero value) otherwise.

Therefore, going back to (1) in the example, if the state of the left IR sensor is active (TRUE), then the code 
block immediately beneath the if() statement is executed.  We use the STEPPER_mov_stwt() (this is the 
step-and-wait versions of motion functions) to move the robot to the left in a tank-like fashion.

If the left IR sensor is not triggered, we repeat the process and check if the right IR sensor is active (TRUE). 
If so, then the code immediately beneath the if-else() block is executed, forcing the robot to turn right.

If neither the left or right IR sensors are triggered, then nothing happens, and everything repeats again on  
the next loop iteration – whereby we continuously check the left OR right sensors for activity.  If something 
happens, then we react accordingly; but if nothing happens, we just keep checking until something does 
happen.

Again,  notice  that  we  are  using  the  step-and-wait functions  to  move  the  robot.   After  the  motion 
completes, the program starts again at the beginning of the while loop, where this same process repeats.

11


