
CEENBoT / TI-Calculator User's Guide &
Command Reference

User's Guide for using the TI-Calculator with the CEENBoT
CEENBoT v2.21 to v2.23 – '324 Platform

Written by Jose Santos, CEENBoT-API Creator and Developer

Department of Computer and Electronics Engineering (CEEN)
University of Nebraska-Lincoln (Omaha Campus)

Rev 1.04
(Current as of Driver: v1.05.024R)

© Copyright – 2011 – CEENBoT, Inc – All Rights Reserved.

University of Nebraska-Lincoln

STOP!

The intended audience of this document is for those wishing to try out and 'test drive' the TI-
driver firmware to use your TI-calculator with your CEENBoT. It is intended for those with the
capability and technical know-how to do so since this software is still in development and not
yet 'production ready' for the 'masses'. It requires that you know how to program your
CEENBoT (flash, or upload software) and have the resources (programmer, AVR studio
software, and PC) for you to do so. If you're not comfortable with these procedures you're
highly advised to wait for the 'production version' of the software.

Having said that, this document also contains information regarding the command set
reference that is supported by the TI-driver firmware – thus, if this is all you're after, you can
freely skip to Chapter 2 of this document for that information.

NOTE

Some features may or may not be yet readily available and as development of the
CEENBoT/TI integration continues, aspects of this document are subject to change at any
time. Always check the source where you obtained this document to ensure you always have
the latest revision of both, documentation and the driver software.

3

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Document Conventions

This document uses the following typographical conventions:

• Code is written using Lucida Console type font. It is typically shown as follows:

void CBOT_main(void)
{

 // ... code here ... ;

} // end CBOT_main()

or using the following:

void CBOT_main(void)

{

 // ... code here ...

} // end CBOT_main()

• Important details of technical interest (numerical values, bit field options, module names) are given in
Courier New font. For example:

 “The STEPPER module requires the speed between 0 to 400 steps/sec.”

• Important notes or comments are given in gray boxes – for example:

Note: Never stick in your ear anything smaller than your elbow.

Comments, Questions, Document Errors and/or Suggestions...

Comments, questions and/or suggestions should be addressed by e-mail to:

ceenbot.api@digital-brain.info

Check out the CEENBoT Portal for latest development news regarding the API:

http://ceenbot.digital-brain.info

4

http://ceenbot.digital-brain.info/

University of Nebraska-Lincoln

WARNING: Before You Begin...

Your CEENBoT may have arrived in your hands with a pre-programmed 'factory' firmware that showcases
some basic functionality. More importantly, this functionality includes power management and battery charging
capability. This capability is NOT yet included in the API. It is very important that you either have a backup, or
have a copy of the original HEX file of the original CEENBoT factory firmware before you flash the driver HEX file
that allows you to use the CEENBoT with your TI calculator, because once your battery gets low on the charge,
you'll want to re-flash the factory firmware back on the CEENBoT so that you can re-charge your battery.

At the time this document was being written, the latest [factory] firmware can be obtained here:

http://www.ceenbotinc.com/tools/

You need to understand that if you wish to restore your CEENBoT to factory settings – for example, you want to
use the CEENBoT to charge your battery after you've done experimenting with the TI driver software for the
CEENBoT – that you need to r e-flash your CEENBoT with the factory firmware (i.e., the aforementioned HEX
file). It is assumed that the end-user understands how to perform this procedure. It is NOT within the scope of
this document to discuss how this is done.

With that said, the following warnings should be taken seriously.

WARNING

Keep a backup of your original firmware and know how to re-flash your CEENBoT BEFORE
YOU BEGIN EXPERIMENTING CEENBoT/TI DRIVER FIRMWARE!

Finally, and most importantly:

NO WARRANTY

THIS PROGRAM (“THE CEENBOT/TI DRIVER”) or simply (“THE DRIVER”) or (“DRIVER”) IS
DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT WITHOUT ANY WARRANTY.
IT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW THE AUTHOR WILL BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA AND/OR EQUIPMENT OR
DATA/EQUPMENT BEING RENDERED INACCURATE OR USELESS OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM OR DEVICE
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF THE AUTHOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

YOUR USE OF THIS “DRIVER” CONSTITUTES YOUR AGREEMENT AND
UNDERSTANDING OF THE 'NO-WARRANTY' CLAUSE.

5

http://www.ceenbotinc.com/tools/
http://www.ceenbotinc.com/tools/

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Note:

“TI”, and “TI-Calculator” are the trademarks of Texas Instruments.

6

University of Nebraska-Lincoln

Chapter 1: Introduction

This section introduces you to the CEENBoT/TI. It also covers how to flash the TI-driver firmware
onto your CEENBoT for experimenting with the TI features. It also discusses the Send()/Get()
commands on your calculator, which represent the foundation that makes the communication
between the CEENBoT and the TI calculator possible.

7

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Introduction

The CEENBoT can be flashed with what will henceforth be referred to as the TI-driver firmware,
which is available as an Intel HEX file. This firmware gives you the ability to use various Texas
Instruments calculator models to write programs on your TI calculator that can be used to control the
CEENBoT. The TI-driver simply sits there waiting for incoming commands from the calculator, and once
received, it determines what command it is, and the appropriate action can be taken.

Presently the software is still in its 'infancy' , but there are sufficient features that will allow potential users
to 'test out' the capabilities of this new way of exploring the CEENBoT. This is possible by taking
advantage of the capabilities warranted by the CEENBoT-API (Application Programming Interface) which
presently dictates everything that the CEENBoT can and cannot do. The cool thing about the
CEENBoT/TI integration is that this provides yet another means of exploring the CEENBoT, and when you
write calculator programs on your TI, you are essentially writing programs that in the end, make use of the
CEENBoT-API. Therefore, you are still writing CEENBoT-API programs. Refer to the CEENBoT-API:
Getting Started guide and the CEENBoT-API: Programmer's Reference if you're curious about the
CEENBoT-API.

Required Ingredients

The figure below pretty much summarizes
what is needed for you to start exploring
the CEENBoT with your TI calculator:

• TI-Calculator – supported (and tested)
models are the TI-82, TI-83+, TI-
84+, TI-85/86, TI-89 (and variants).

• CEENBoT – It must be platform '324
v2.21 or v2.23.

• TI/CEENBoT Adapter Board (v2.21) –
This 'circuit-board' plugs onto the
CEENBoT's connector (see figure). It is
where the link cable connects to. Note
the new v2.23 boards do NOT require
that you have this adapter board as the
cable now connects directly to the
CEENBoT controller board (not shown).

• TI-communication Link Cable – this is
the communications cable with two
2.5mm jacks (similar to those used with
your headphones, but the jack is smaller).

(Continued on next page)

8

University of Nebraska-Lincoln

• AVR/ISP Programmer – You need this to flash the TI-driver
firmware if your CEENBoT doesn't come preloaded with it.

Presently, since the TI-driver firmware is available for users to 'test
run' the firmware on their own, you'll have to do the flashing of the
firmware yourself. You'll need this (or a similar ISP programmer) in
order to do so.

This also means you'll need to have installed, or have access to
AVR Studio from ATMEL Corporation, which is the software that
can be used to upload and program the CEENBoT. This software
is available for free from the ATMEL website at
http://www.atmel.com (you will have to search for it and also
register with ATMEL before you are allowed to download it).

• TI-Driver Firmware – This is the program that is flashed in the CEENBoT and allows communication
between the CEENBoT and the TI calculator to take place. Presently, you can obtain trial versions from:

http://ceenbot.digital-brain.info

Note: Manual programming of the TI-driver firmware into your CEENBoT is needed during
this 'public testing' phase. However, in the future, it is expected that this feature will be part of
the preloaded 'factory' firmware.

Finally, please take notice also of the Command Status Display – this is the CEENBoT's LCD and it will
display commands once received from the TI calculator.

9

http://ceenbot.digital-brain.info/
http://www.atmel.com/

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Flashing the TI-Driver Firmware to your CEENBoT

Assuming that you have AVR Studio 4 installed in your PC, and that you have a suitable ISP programmer
(already attached to your PC's USB or COM port, depending on your ISP model) – you'd perform the
following steps:

• Start AVR Studio 4.

• If the Welcome to AVR Studio panel shows up, simply click on [Cancel] since we're NOT
creating a project.

• Connect your programer to your CEENBoT as shown below:

After attachment, TURN ON your CEENBoT.

Note: Make sure your calculator and TI-adapter are NOT attached to your CEENBoT.

10

University of Nebraska-Lincoln

• In AVR Studio 4 there's an icon that says “AVR” as shown below – click on it.

• IF you're connecting your ISP for the first time the following panel might come up:

Here, you must select the model (or Platform) and Port which your ISP programmer is attached to. On
my machine, I'm using the AVRISP mkII on a USB port, so that's why I have that selected. Yours may
be different. In any case, after selection, click on [Connect].

11

CEENBoT-API: Programmer's Reference (Rev. 1.04)

• After clicking on the [Connect] button, the following panel should show up. Mine shows up with the
Program Tab already selected, but yours might be different. In any case, before we do anything, click
on the Main Tab first (you should see the following).

In the region labeled Device and Signature Bytes, click on the drop-down menu and select
ATmega324P. This is the micro-controller on your CEENBoT '324 v2.2x platform.

Then, click on the [Read Signature] button. You should see messages along the bottom of the
panel saying everything went “OK”. If not you'll get an error.

Note: If this step is NOT successful then it is NOT worth trying to flash (program) your CEENBoT,
because this is a way for you to verify that your ISP programmer is successfully communicating with
the micro-controller. Therefore, you CANNOT MOVE ON UNLESS YOU CAN SUCCESSFULLY
READ THE SIGNATURE BYTES!

12

University of Nebraska-Lincoln

• Now click on the Program Tab. You should see the panel below:

Click on [...] as shown (2), and find the HEX file for the TI driver firmware (the above figure shows a
different HEX file (I 'borrowed' the image above from a different tutorial)). You should know where you
downloaded and saved the file on your system. Find it and select it (The TI-driver HEX file that is).

• Click on [Program]. Watch the progress bar go, and if everything goes well, no error messages will
be issued.

At this point, turn your CEENBoT OFF, disconnect the ISP table and proceed to the next section. You
may now close AVR Studio.

Note: REMEMBER... the TI-driver firmware is provided for 'testing purposes'. It does NOT
have power management, and it cannot monitor the voltage levels of your batteries. You must
perform this same procedure to flash back the original factory firmware once you're done
'experimenting' with the TI-driver features if you want to charge your batteries with the
CEENBoT and put everything back the way it was. I cannot stress this enough!

13

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Starting the CEENBoT/TI Experience

Now that you have flashed the TI-driver firmware onto your CEENBoT, attach your calculator to the
CEENBoT by using the link communication cable and plug that into the CEENBoT/TI adapter module
(which should NOW be attached to your CEENBoT – if you have v2.21 of the controller board), or
directly into the jack of the controller board itself (if you have the new v2.23 of the controller board).

First, turn the calculator ON, and then turn ON the CEENBoT.

Note: When you're done, do the above in the same order – turn the calculator OFF, then turn
the CEENBoT OFF. If you turn the CEENBoT OFF first, then the calculator may become
unresponsive and you won't be able to turn it OFF until you either unplug the link cable, and in
some cases you may be forced to remove the batteries (if that happens to you).

It should display (note your firmware version may be different):

TI Driver v1.04.002R

(c) CEENBoT, Inc.

Then, about 2-4 seconds later it should display:

Starting Driver...

TI-mode OK.

Awaiting Commands...

If you see this – you're ready to rock and roll. However, if the CEENBoT has problems “seeing” the
calculator it will display the following error message:

Starting Driver...

TI-mode ERROR.

Finally, before you start trying 'things' out , please take a look at the on-board liquid crystal display of the
CEENBoT's controller board. As the CEENBoT sits there, awaiting for commands from the calculator, you
should see an angled bracket (>) blinking ON and OFF at the top right-hand corner of the LCD at a rate
roughly of 'once-per-second'. Think of this as the 'heartbeat' of the TI-driver program. As long as it's
'beating' – things are good... but if, while you're trying things out, you don't see this anymore, or it
remains fixed (without blinking), then that tells you the firmware may have crashed or locked up. So just
keep that in mind.

Let's write some programs!

14

University of Nebraska-Lincoln

First CEENBoT/TI Program

Let us begin with a super-simple example. We'll write a simple program to toggle the red LED on the
CEENBoT's controller board.

Note: Before we begin, you should note that it is not within the scope of this document to
teach you how to program using your calculator with TI-Basic – it is assumed that you know
how to create a file to start writing a program in your calculator and know how to run it and are
aware of the particular 'peculiarities' of your TI calculator model. The goal here is to give a
generalized example.

Here's the code you should write on your TI calculator:

:{ 11, 1, 2 } → L1

:Send(L1)

:Get(X)

:Disp X

Note: Do NOT enter the above commands in a “letter-by-letter” fashion. That is, do not press
the [ALPHA] key and then enter S-e-n-d, etc to enter commands. Instead, you must [after
reading your calculator owner's manual] find the Send/Get commands under the suitable
menu. Unfortunately, the manner in which this is done is different depending on the calculator
model. For example, on the TI-83+/TI-84+, you push the [PRGM] button while already
programming (editing your program), to get access to the command “catalog” supported by
the calculator. If you scroll towards the bottom under the I/O menu, you'll find the Send/Get
commands, which you select by pushing [ENTER]. But again, this is how it's done with the
TI-83+/TI-84+ models. You have to consult the “programming” section of the manual of your
TI calculator model so that you know how commands are entered for your particular TI model.

Let's talk about this program since it sets the tone for all the programs you will write. The first three lines
are the most important because they represent the foundation for successful communication between the
CEENBoT and the TI calculator – that is: the Send(), and Get() commands.

The first line creates a set (also called a list) containing three elements with the values given. The set is
then stored in the variable L1 (the arrow is obtained by pushing the [STO>] key on the calculator.

Note: Older TI modules require that lists be saved on specific variables such as L1, L2, L3, etc.
Newer calculator modules don't have this restriction, however. In that case you can 'store' the
list on any variable, such as X, Y or Z.

15

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Next, the Send(L1) command works just as its name suggests – it sends the list of numbers via its
communication port to the CEENBoT. The CEENBoT will read this list and determine its significance and
perform some action as a result. In this case, the meaning is as follows:

11 – means this is an LED command.
1 – means this LED command will affect the red LED.

 2 – means the LED will toggle states (if ON, then switch to OFF and vice versa).

Note: Chapter 2 , consists of the supported command reference. You can check this chapter
out to see what commands are supported, and the meaning behind the numbers of the list
given.

Next is the Get(X) command. This will force the calculator to 'listen' for a response from the CEENBoT.
The CEENBoT will respond by returning a value – this value will be stored in the named variable – in this
case, it is X. Whether this value is of any significance depends on the command but the CEENBoT will
always return a value upon issuing of a Send() from the calculator. Regardless of its significance you
MUST always follow a Send() with a Get()!

Note: Every Send() command in your calculator program must be followed by a Get(). This
means you should never issue multiple Send() command back-to-back, since there is no
guarantee that the CEENBoT will catch all of them in this manner – the Get() ensures that the
calculator waits for a response from the CEENBoT before proceeding with program execution.

Note: Do NOT use a list variable name – for example, L1, with the Get() function. Use a
generic variable, like X, Y, or Z. The calculator doesn't return lists back – it only receives
them, so it doesn't make sense to store the result in a list variable.

Finally, the last line is optional. It is there to show on the calculator screen what was the value returned
by the CEENBoT. This step is not necessary.

So as you can see, all of your CEENBoT/TI programs will consist of a series of Send()/Get() commands
in addition to any other commands supported by your TI calculator. Please consult with the calculator's
manual on writing programs for your calculator. In any case, and depending on your calculator model,
you should be able to press the [PRGM] button to select your newly written program and execute it. If all
goes well, you should see the angled bracket (>) on the LCD toggle ON and OFF each time the program
is run.

Note: Newer calculators such as the TI-89 series don't have a [PRGM] button – program can
be executed by entering your program's name with parenthesis – for example, if we had
named our program ledtest. Then on the home screen, you would type ledtest() followed
by the [Enter] key to begin execution. Again, all TI calculators have slight differences, so
you must consult the manual for your particular model.

16

University of Nebraska-Lincoln

So, What Next?

Now that you've got the 'gist' of it, go to Chapter 2 and familiarize yourself with the command set and start
experimenting! I leave you with one final example program you can try out:

This is an example on how you can write a program on the TI-83+/TI-84+ models. Note that I don't make
use of the list variable at all, and instead, write the list inside of the Send() function. I do this, because I
can get away with doing that on these models – but that's not always the case. I labeled each line with a
number for the brief discussion that follows – I encourage you to check out the command reference in the
next chapter to understand how to 'decipher' each of the numerical values for each command:

: Send({ 12, 2, 300 }) (1) – Sets the acceleration.

: Get(X)

: Send({ 1, 2, 0, 200 }) (2) – Move in free-running mode.

: Get(X)

: Send({ 10, 4000 }) (3) – Delay for 4 seconds.

: Get(X)

: Disp X

: Send({ 0, 2, 0 }) (4) – Stop.

: Get(X)

: Send({ 3, 0, 150, 200, 1 }) (5) – Tank-turn left for 150 steps.

: Get(X)

: Send({ 3, 1, 150, 200, 1 }) (6) – Tank-turn right for 150 steps.

: Get(X)

(1) – Command 12, sets the acceleration for both motors to 300 steps/sec2. The 2 indicates this
command settings should affect both motors. This value is persistent. Once set, it stays set until you
change it by issuing another command like it.

(2) – Command 1, issues a motion in free running mode. In this mode, 'distance' is irrelevant. The motor
just starts and it will only stop until you tell it to (see next command below). In this command, the 2
indicates both motors will move, while the 0 means to move forward. Finally, the 200 refers to the speed
at which the motors will move (note that this is in addition to the acceleration set in step (1)).

(3) – Command 10, is a delay command. The delay is in units of milliseconds. Therefore, the command as
written in this line will delay for 4000ms, which is equivalent to four seconds.

(4) – In this line, (which happens four seconds later), we issue command 0 to stop the motors that we started
previously in line (2). The 2 that follows indicates that we want to stop both motors, and the 0 that follows
indicates we wish to keep the 'brakes' disengaged.

(5) – (See next line below)
(6) – Lines (5) and (6) do the same thing. Command 3 is for “tank turn”. They issue a motion in step mode.

In this mode, distance DOES matter, because we know specify the number of 'steps' each motor will
move. Note the only difference between these two lines is the 0 (in line (5)) which causes the CEENBoT
to “tank-turn” LEFT, and 1 (in line (6)) which causes the CEENBoT to “tank-turn” RIGHT. The 150 is the
number of steps that the motors are to move, while the 200 is the speed that each motor will move, which
in turn, determines how fast the CEENBoT “tank-turns”.

The above example focuses specifically on showing how the 'commands' are used via Send/Get. Keep in
mind, that your programs can be more complicated than this – that is, you can use TI-Basic programming
constructs to their full potential – you can use while loops, for loops, conditional if..then...else blocks, etc.
It is up to you how creative you wish to get with your programming.

17

CEENBoT-API: Programmer's Reference (Rev. 1.04)

18

University of Nebraska-Lincoln

Chapter 2: Command Set Reference

This chapter covers the command set supported by the CEENBoT/TI-driver firmware. It covers the
command set along with specific detail and meaning behind any required parameters that each
command may or may not have.

19

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Command Set Format

As discussed in Chapter 1, you send commands to the CEENBoT by constructing lists, which have one or
more elements. The first element always designates the command that will be issued to the CEENBoT.
Any additional elements that follow are additional arguments needed by the specific command to perform
some action.

{ <command>, ... }

Throughout this chapter, descriptive labels will be used that are enclosed in angled brackets <> to give an
idea of the meaning behind each argument that is part of the list. For example:

{ 11, <which_LED>, <state> }

This command (11) can be used to control the LEDs on the CEENBoT. The first argument must be 11,
while the meaning of the second and third arguments are used to specify which LED is affected, and what
the operation or state of the LED will take place. However, keep in mind that you can only specify
integers for all arguments of the command.

Command Set Summary

The following is a summary of the command set supported by the CEENBoT/TI firmware.

Motion Commands

• {0, ... } – Stop any current motion.
• {1, ... } – Issue a motion command in free-running mode.
• {2, ... } – Issue a motion command in step mode.
• {3, ... } – Issue a motion command to do a tank turn (in step mode).
• {4, ... } – Issue a motion command in free-running mode and STOP if you bump into

something.
• {5, ... } – Issue a motion command in step mode and STOP if you bump into something.

Utility Commands

• {10, ... } – Delay for a specified number of milliseconds.
• {11, ... } – Used to control the state of the on-board LEDs.
• {12, ... } – Used to set the acceleration of the stepper motors (in steps/sec2).
• {13, ... } – Used to get state information about the IR (Infra-Red) sensors, and on-board

switches.
• {14, ... } – Used to set the speed of the stepper motors (in steps/sec). This command

will also issue a motion.
• {15, ... } – Used to set the direction of the stepper motors when 'primitive' motion

commands are issued (such as command 14 above, to set the speed).
• {16, ... } – Used to set the number of steps that each stepper should move when the

operating run mode is step mode.
• {17, ... } – Used to set the operating run mode.

(Continued on next page)

20

University of Nebraska-Lincoln

• {18, ... } – Used to control the positions of any RC servos attached to the CEENBoT.
• {19, ... } – Used to play a repetitive 'beep pattern' via the CEENBoT's speakers.
• {20, ... } – Used to trigger the ultrasonic sensor and obtain a distance-to-target.

Event Commands

(7) {30, ... } – The wait-on-bump command. Used to pause execution of your program until
one of the IR bump sensors is triggered.

(8) {31, ... } – The wait-on-switch command. Used to pause execution of your program until
one of the three switches is depressed.

Test Command

• {2000, ... } – This is a test command (i.e., for testing purposes) – it does nothing.

21

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Command Set Reference

The STOP Command: {0, ... }

Format:

{ 0, <which>, <brake_mode> }

Description:

Use this command to stop or cancel a motion that is currently taking place.

Arguments:

<which> – Must be one of the following values:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<brake_mode> - Must be one of the following values:
0 = Keep the brakes OFF upon stopping.
1 = Engage the stepper brakes.

Note: If you engage the brakes, they will remain engaged until you explicitly dis-engage
them! This can be done by re-issuing this same command, but with the brake mode argument
set to 0.

The RUN Command: {1, ... }

Format:

{ 1, <which>, <dir>, <speed> }

Description:

This command can be used to issue a motion (get the stepper motors moving) in free-running mode. In
this mode, the motors will run for an indefinite amount of time (until you issue a STOP command).

Arguments:

<which> – Must be one of the following values – it determines which motor will be affected:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<dir> – Must be one of the following values:
0 = Move specified motor(s) forward.
1 = Move specified motor(s) in reverse.

(Continued on next page)

22

University of Nebraska-Lincoln

(Continued from previous page)

<speed> - Specifies the speed of the affected motor(s) in steps/sec.

Must be between 0 and 400.

The STEP (& Wait) Command: { 2, ... }

Format:

{ 2, <which>, <dir>, <steps>, <speed>, <brk_mode> }

Description:

This command can also be used to issue a motion (get the stepper motors to move), but is for issuing
finite-distance moves. That is, a motion in step mode (as opposed to free-running mode). In this mode,
you specify precisely how far you want to move by specifying the number of 'steps' the affected stepper(s)
will move. Therefore, motion is bound to complete at some point. The function will BLOCK (wait) until the
motion has fully completed.

Arguments:

<which> – Must be one of the following values – it determines which motor will be affected:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<dir> – Must be one of the following values:
0 = Move specified motor(s) forward.
1 = Move specified motor(s) in reverse.

<steps> - Specifies the 'distance' (how many steps the affected stepper(s) will move).

Must be a value between 0 and 65535 (approximately 327 wheel revolutions).

<speed> - Specifies the speed of the affected motor(s) in steps/sec.

Must be between 0 and 400.

<brake_mode> - Must be one of the following values:
0 = Keep the brakes OFF upon stopping.
1 = Engage the stepper brakes.

Note: If you engage the brakes, they will remain engaged until you explicitly dis-engage
them! This can be done by re-issuing this same command, but with the brake mode argument
set to 0.

23

CEENBoT-API: Programmer's Reference (Rev. 1.04)

The TANK-TURN Command: { 3, ... }

Format:

{ 3, <which_way>, <steps>, <speed>, <brk_mode> }

Description:

This command like STEP & WAIT previously discussed can also be used to issue finite-distance moves
in step mode. However, this command is specifically for turning the CEENBoT in a tank-like manner
(about the axis located at the center between the CEENBoT's two front wheels.

Arguments:

<which_way> – Must be one of the following values:
0 = Turn LEFT.
1 = Turn RIGHT.

<steps> - Specifies the 'distance' (how many steps the affected stepper(s) will move).

Must be a value between 0 and 65535 (approximately 327 wheel revolutions).

<speed> - Specifies the speed of the affected motor(s) in steps/sec.

Must be between 0 and 400.

<brake_mode> - Must be one of the following values:
0 = Keep the brakes OFF upon stopping.
1 = Engage the stepper brakes.

Note: If you engage the brakes, they will remain engaged until you explicitly dis-engage
them! This can be done by re-issuing this same command, but with the brake mode argument
set to 0.

24

University of Nebraska-Lincoln

The RUN-AND-BUMP Command: { 4, ... }

Format:

{ 4, <which>, <dir>, <speed>, <timeout> }

Description:

This command will issue a motion in free-running mode, but it will WAIT UNTIL either of the following
happens:

• LEFT and/or RIGHT IR bump sensors are triggered (due to obstacle).
• The specified timeout elapses completely.

The purpose of the timeout is for the CEENBoT to run forever if no object is ever encountered, which will
also keep your calculator program from running if a timeout doesn't happen later or sooner and is the
reason for its existence.

Arguments:

<which> – Must be one of the following values – it determines which motor will be affected:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<dir> – Must be one of the following values:
0 = Move specified motor(s) forward.
1 = Move specified motor(s) in reverse.

<speed> - Specifies the speed of the affected motor(s) in steps/sec.

Must be between 0 and 400.

<timeout> – Must be some non-zero value up to 30 seconds (1 to 30). It specifies how long the
CEENBoT should continue to move in the specified direction until it has to stop if no object
collision ever occurs.

Returns:

The CEENBoT will return the following values upon completion of this command, which is obtained by the
user by issuing a Get() following the corresponding Send() on the calculator program – the returned
value represents the reason for having stopped:

0 = No bump hit (i.e., timed out).
1 = LEFT bump triggered.
2 = RIGHT bump triggered.
3 = BOTH bump sensors triggered simultaneously.

The user then can use this information to make further decisions in his/her program (i.e., move around the
offending obstacle, back up, etc).

25

CEENBoT-API: Programmer's Reference (Rev. 1.04)

The STEP-AND-BUMP Command: { 5, ... }

Format:

{ 5, <which>, <dir>, <speed>, <steps> }

Description:

This command will issue a motion for a finite-distance move in step-mode. It will continue this motion until
one of the following occur:

• A bump sensor is triggered (LEFT, RIGHT, or BOTH) due to obstacle detection.
• The initial specified step distance to travel has been completed.

In either case the 'BoT will come to a stop and will return back a value that signifies the reason for
stopping (see 'Returns' section below).

Arguments:

<which> – Must be one of the following values – it determines which motor will be affected:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<dir> – Must be one of the following values:
0 = Move specified motor(s) forward.
1 = Move specified motor(s) in reverse.

<speed> - Specifies the speed of the affected motor(s) in steps/sec.

Must be between 0 and 400.

<steps> - Specifies the 'distance' (how many steps the affected stepper(s) will move).

Must be a value between 0 and 65535 (approximately 327 wheel revolutions).

Returns:

The CEENBoT will return the following values upon completion of this command, which is obtained by the
user by issuing a Get() following the corresponding Send() on the calculator program – the returned value
represents the reason for having stopped:

0 = No bump hit while traveling.
1 = LEFT bump triggered.
2 = RIGHT bump triggered.
3 = BOTH bump sensors triggered simultaneously.

The user then can use this information to make further decisions in his/her program (i.e., move around the
offending obstacle, back up, etc).

26

University of Nebraska-Lincoln

Utility Commands

The previous section discussed motion-issuing commands – in this section, we cover 'utility' commands
(miscellaneous commands other than motion-issuing types).

The DELAY Command: { 10, ... }

Format:

{ 10, <delay_ms> }

Description:

This command can be used to issue a delay in units of milliseconds to have the CEENBoT (and your
Calculator program) hold off before doing anything else.

Arguments:

<delay_ms> – The delay to wait on in units of milliseconds.

Must be between 0 and 32767 milliseconds. (32.7 seconds max).

The LED Command: { 11, ... }

Format:

{ 11, <which_LED>, <state> }

Description:

This command can be used to control the on-board LEDs on the CEENBoT (Red and Green LEDs).
They can be turned ON, OFF, or toggled from one state to the other.

Arguments:

<which_LED> – Specifies which LED will be affected:

0 = Green LED.
1 = Red LED.

<state> – Specifies how the LED will be affected:

0 = Turn the LED OFF.
1 = Turn the LED ON.
2 = Toggle the LED STATE. (From ON to OFF and vice versa).

27

CEENBoT-API: Programmer's Reference (Rev. 1.04)

The SET ACCELERATION Command: { 12, ... }

Format:

{ 12, <which>, <accel> }

Description:

This command can be used to enable or disable stepper acceleration by setting the appropriate
acceleration constant. Acceleration is given in units of steps/sec2.

Arguments:

<which> – Must be one of the following values – it determines which motor will be affected:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<accel> - The acceleration rate for the specified stepper(s) in units of steps/sec2:

Must be between 0 to 1000.

Note: A value of zero acceleration effectively disables acceleration. Any non-zero value will
enable the acceleration.

The GET SENSORS Command: { 13, ... }

Format:

{ 13, <which_sensor> }

Description:

This command can be used to inquire about the state of the on-board Infrared (IR) sensors as well as the
state of the on-board switches of the CEENBoT. A user can then use the returned value to make a
decision in his/her Calculator program. As with all commands you must follow this command with a Get()
call in order to obtain the 'response' for the information you requested from the CEENBoT regarding the
state of the sensors.

Arguments:

<which_sensor> – Must be one of the following:

0 = Get state of LEFT IR (Bump sensor).
1 = Get state of RIGHT IR (Bump sensor).
2 = Get state of either LEFT and/or RIGHT (whichever is active if any).
3 = Get state of SW3 (on-board switch).
4 = Get state of SW4 (on-board switch).
5 = Get state of SW5 (on-board switch).

(Continued on next page)

28

University of Nebraska-Lincoln

(Continued from previous page)

Returns:

The command will return either a 1 or a 0 regarding the state of the requested sensor. To obtain this
value, you must follow the Send() command with a Get() to obtain the response from the CEENBoT. For
example:

:{ 13, 2 } → L1

:Send(L1)

:Get(X)

:Disp X

Request the state of either IR sensor. Then, the following Get() will obtain the result. This value will be 1
if either IR sensor is being 'blocked', or 0 if nothing is happening.

The SET RC SERVO POSITION Command: { 18, ... }

Format:

{ 18, <which_servo>, <position> }

Description:

This command allows an RC (Radio-controlled) servo to be controlled – that is, for its position to be
manipulated. An RC servo can be attached to the CEENBoT via one of the five RC servo ports 0, 1, 2, 3,
or 4 (located next to the ON/OFF switch).

Arguments:

<which_servo> – Must be one of the following:

0 = Position value will affect the servo on port 0.
1 = Position value will affect the servo on port 1.
2 = Position value will affect the servo on port 2.
3 = Position value will affect the servo on port 3.
4 = Position value will affect the servo on port 4.

<position> – Must be a value between 400 and 2100. These values correspond to the counter-clockwise
and clockwise-most positions of the servos. Finding the necessary numerical value such that
your servo sits at its positional 'center' must be determined experimentally by you.

29

CEENBoT-API: Programmer's Reference (Rev. 1.04)

The PLAY BEEP PATTERN Command: { 19, ... }

Format:

{ 19, <beep_freq>, <beep_duration_ms>, <beep_active_percent>, <beep_repeat_times> }

Description:

This command allows you to generate some interesting (although not necessarily musical) beep patterns
via the CEENBoT's on-board speaker. Beeps can be emitted up to a frequency of 500Hz, so it is by no
means for musical purposes, but beeping, for “beeping's sake”.

Arguments:

<beep_freq> – This is the beep frequency in Hz. It must be a value between 0 to 500.

<beep_duration_ms> – This argument specifies the duration (in milliseconds) of the beep. It must be a
value between 0 to 32767 ms (equivalent to 32.767 seconds).

<beep_active_percent> – This must be a percent value between 0 and 100. This is the percentage of
time of the beep duration (given in the previous argument) for which the note will
remain active (i.e., audible). For example, if <beep_duration_ms> above is
250 ms, and <beep_active_percent> is 80, then of the 250 ms, the note will be
audible for 200 ms (that's 80% of 250), and silent for the remaining 50 ms. But it
will still take 250ms for the command to complete.

<beep_repeat_times> – This is the number of times you want to repeat the beep. If you specify 1, then
the beep will play once. But if you specify 4, or 8, or whatever, then the note will
play multiple times and thus, generate the beep pattern. Of course, this requires
that you ensure your beep is silent for a little bit (by not specifying 100 for the
<beep_active_percent> argument, so that you can hear the beep stop and start
again – otherwise, your beep pattern will sound as one single long beep.

Example:

: Send({ 19, 440, 250, 80, 4 }) (1)

: Get(X)

: Send({ 19, 500, 125, 80, 8 }) (2)

: Get(X)

Line (1) we issue a beep pattern of 400Hz that takes 250ms to complete, but is only audible for 80% of
this time. The note is repeated 4 times. (See the below figure as an illustrative example).

Line (2) we issue another beep pattern, this time at 500Hz that takes 125ms to complete, but is only
audible for 80% of this time. The note is repeated 8 times.

30

University of Nebraska-Lincoln

The PING Command: { 20, ... }

Format:

{ 20, <number-of-times-to-ping> }

Description:

This command allows you to trigger the PARALLAX Ultrasonic PING))) sensor to emit an “echo pulse”
that will hit an object and bounce back, allowing you to determine the distance-to-target. The command
returns the distance-to-target in centimeters scaled by 10, meaning that you must divide the value
returned by 10 to get the distance in pure centimeters. See the 'Example' section below.

Argument:

<number-of-times-to-ping> – This is the number of 'echoes' to emit, before returning the distance-to-
target. The function will wait 10ms before emitting the next echo. If more than
one 'echo' is requested, the distance value returned will be the average of all the
echoes specified. Thus, you must specify a value of 1 or more. (See 'Example'
below).

Returns:

The CEENBoT will return the the distance-to-target in units of centimeters scaled by 10 upon completion
of this command, which is obtained by the user by issuing a 'Get()' following the corresponding 'Send()' on
the calculator program. Because the value is “scaled by 10”, you must, on the calculator side, divide the
returned value by 10. This resulting value, is the distance-to-target in pure centimeters.

Hardware Dependencies:

To make use of this feature you'll need the PARALLAX Ultrasonic PING))) sensor presently used with
the CEENBoT. Aside from the Power and Ground pins to power the sensor, the 'trigger' pin must be
connected to PA3, accessible via header J3, pin 1 on the CEENBoT's controller board.

Power and Ground to power the sensor can be obtained from the pins in header J7 where the RC servos
plug into. You can use an un-used port to power your sensor. Detailed instructions are beyond the scope
of this document.

Example:

Here's a quick example of a TI-Basic program to obtain distance-to-target using the ultrasonic sensor.
The numbers in parenthesis are simply for reference and are not part of the program:

:Send({20, 4}) (1)

:Get(X) (2)

:(X/10)->Y (3)

:Disp Y (4)

Line (1) sends the command to issue an 'echo' four times. Line (2) obtains the result and stores the
distance value in the variable X. Then in line (3), X is divided by 10 and stored in Y where in line (4) we
display the result (which is in units of centimeters). You can use other conversion values in your program
to convert from centimeters to some other distance units.

31

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Event Commands

Event commands are commands that wait for something to “happen”. Event commands cause your
program to “pause” until the requested event occurs. Currently two event commands exist.

The WAIT-ON-BUMP Command: { 30, ... }

Format:

{ 30, <which_sensor> }

Description:

The wait-on-bump command will cause your program to “pause” until the specified IR bump sensor is
triggered. You can specify whether you want to “wait” until just the LEFT sensor is triggered, or just the
RIGHT sensor, or either sensor.

Arguments:

<which_sensor> – Must be one of the following values:

1 = Wait until the LEFT bump sensor is triggered.
2 = Wait until the RIGHT bump sensor is triggered.
3 = Wait until either the LEFT or RIGHT (or BOTH) sensors are triggered.

Returns:

The command will return one of the following values, which you obtained by following the Send()
command with the corresponding Get():

1 = The LEFT bump sensor was triggered.
2 = The RIGHT bump sensor was triggered.
3 = BOTH bump sensors were simultaneously triggered.

Note that you will only be notified to the sensor you specified in <which_sensor>. For example, if you
specify that you want to wait until the LEFT sensor is triggered, then you will only be notified if the LEFT
sensor is triggered and not on the RIGHT, etc.

32

University of Nebraska-Lincoln

The WAIT-ON-SWITCH Command: { 31, ... }

Format:

{ 31, <which_switch> }

Description:

This wait-on-switch command will cause your program to “pause” until the specified switch is depressed.
You can specify whether you want to wait until switch 3, or 4, or 5 are depressed. These are labeled SW3,
SW4, and SW5 on the CEENBoT's controller board. Note that nothing else will happen until the condition
you're waiting on occurs.

Arguments:

<which_switch> – Must be one of the following values, which specifies the switch you're waiting on:

0 = Wait until ANY switch is depressed.
3 = Wait until switch SW3 is depressed.
4 = Wait until switch SW4 is depressed.
5 = Wait until switch SW5 is depressed.

Returns:

The command returns a numerical value, which you obtain by issuing a Get() after the corresponding
Send() signifying the switch that was depressed that caused the “wait” to terminate:

3 = SW3 was depressed.
4 = SW4 was depressed.
5 = SW5 was depressed.

33

CEENBoT-API: Programmer's Reference (Rev. 1.04)

Test Commands

The TEST Command: { 2000, ... }

Format:

{ 2000, <val_1>, <val_2>, <val_3>, <val_4>, <val_5> }

Description:

This command can be used to 'test' communication between the attached calculator and the CEENBoT.
It doesn't do anything other than it displays the received values and displays them on the LCD display of
the CEENBoT. It is for debugging purposes, but you can use it to check and verify communication
between your calculator and the CEENBoT.

Arguments:

<val_1> – Can be any value in the range of -32768 to 32767.
<val_2> – Can be any value in the range of -32768 to 32767.
<val_3> – Can be any value in the range of -32768 to 32767.
<val_4> – Can be any value in the range of -32768 to 32767.
<val_5> – Can be any value in the range of -32768 to 32767.

Returns:

The command returns the value of 2000, which can be obtained by issuing a Get() following the
corresponding Send() that initiated the command in the first place.

34

University of Nebraska-Lincoln

Primitive Motion Commands

The following commands can be used to issue motions (get the stepper motors to move) – however this are
slightly more primitive commands. The preferred motion commands should be those discussed at the beginning
of this chapter: RUN, STEP (& WAIT), and TANK-TURN. However, the commands that follow can be used for
'finer control'. They're included here for 'whatever it's worth'. Unlike the principal motion commands at the
beginning of this chapter, these commands require that you explicitly set the operating run mode before doing
anything else – recall the operating run modes are free-running and step modes.

The RUNMODE Command: { 17, ... }

Format:

{ 17, <run_mode> }

Description:

Use this command to set the operating run mode when using the primitive motion commands. The two
operating modes are free-running in which (distance plays NO role), and step mode (where distance
DOES play a role – i.e., finite-distance move).

Arguments:

<run_mode> – Must be one of the following:

0 = Set run mode to free-running.
1 = Set run mode to step mode.

The SET DIRECTION Command: { 15, ... }

Format:

{ 15, <dir_L>, <dir_R> }

Description:

This command can be used to prepare the direction the wheels will move ONCE motion is issued with the
SET SPEED primitive command.

Arguments:

<dir_L> – Must be one of the following:

0 = LEFT wheel should move forward.
1 = LEFT wheel should move in reverse.

<dir_R> – Must be one of the following:

0 = RIGHT wheel should move forward.
1 = RIGHT wheel should move in reverse.

35

CEENBoT-API: Programmer's Reference (Rev. 1.04)

The SET STEPS Command: { 16, ... }

Format:

{ 16, <which>, <steps_L>, <steps_R> }

Description:

This command can be used to prepare the distance that each stepper will move ONCE motion is issued
with the STEP SPEED primitive command. Specification of distance with this command is required if you
have set the operating run mode to step mode using the RUNMODE command.

Arguments:

<which> – Must be one of the following values – it determines which motor will be affected:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<steps_L> – Must be a value between 0 and 65535 (approximately 327 wheel revolutions).
<steps_R> – Must be a value between 0 and 65535 (approximately 327 wheel revolutions).

Note: Note that if you specify only ONE stepper to be affected, the parameter for the other
will be ignored – (i.e., you can set it to zero). Regardless of whether you specify that only one
motor, or BOTH motors are affected, all parameters are REQUIRED – even if you have to set
one of them to zero – it is very likely this 'awkwardness' will change in a future revision.

The SET SPEED Command: { 14, ... }

Format:

{ 14, <which>, <speed_L>, <speed_R> }

Description:

All of the primitive motion commands discussed so far simply 'prepare' the parameters for a motion to
take place (the run mode, steps (if in step mode), and direction, etc). THIS command, then, is THE
command which will execute and trigger the motion to take place according to the previously set
parameters.

(Continued on next page)

36

University of Nebraska-Lincoln

(Continued from previous page)

Arguments:

<which> – Must be one of the following values – it determines which motor will be affected:
0 = LEFT stepper.
1 = RIGHT stepper.
2 = BOTH steppers.

<speed_L> – Must be a value between 0 and 400.
<speed_R> – Must be a value between 0 and 400.

Note: Note that if you specify only ONE stepper to be affected, the parameter for the other
will be ignored – (i.e., you can set it to zero). Regardless of whether you specify that only one
motor, or BOTH motors are affected, all parameters are REQUIRED – even if you have to set
one of them to zero – it is very likely this 'awkwardness' will change in a future revision.

Note: The SET SPEED command can also be useful for modulating the speed of the steppers
as a motion is TAKING PLACE (in free-running mode ONLY) – that is, a motion you may have
already issued via RUN command discussed at the beginning of this chapter.

In this case it is not necessary to set the direction, operating mode, nor number of steps since
the higher motion commands do all this stuff internally.

37

CEENBoT-API: Programmer's Reference (Rev. 1.04)

38

