
The CEENBoT-API: Getting Started
Tutorial on getting started with the CEENBoT-API on the CEENBoT v2.21 – '324 Platform

Written by Jose Santos,
CEENBoT-API Creator and Developer

Undergraduate Student, Department of Computer and Electronics Engineering (CEEN)
University of Nebraska-Lincoln (Omaha Campus)

Rev 1.07
(Current as of: v1.09.000R)

Copyright © 2011, University of Nebraska Board of Regents

(Blank)

University of Nebraska-Lincoln

Introduction

The CEEBoT-API is an application programming interface that exposes a set of functions which allow you
to control and manipulate the CEENBoT in a a simplified manner. Its purpose is not necessarily to completely
replace 'bare-metal' programming of the 'BoT, but simply to provide an optional set of tools that allows the end-
user to explore the CEENBoT and its capabilities in a more friendly, inviting, and open-ended manner. This opens
up the CEENBoT for exploration at multiple skill levels for those who do not wish to be bothered with the intricate
details of the CEENBoT's electronics.

The CEENBoT-API exposes a rich set of C functions that allows usage of the various hardware resources
available on the CEENBoT itself through simple, well-documented function calls. These set of functions allow the
manipulating of peripherals some of which include graphic LCD display, on-board LEDs, stepper motors and
more. The API function library is exposed to the user by way of a pre-compiled static library. The user merely
needs to include the appropriate header files and link against this static library to take advantage of the rich set of
functions.

This 'getting started' document is an important first step on beginning to explore the capabilities of the CEENBoT-
API. It walks you through a tutorial on how to write programs that run on the CEENBoT which take advantage of
the CEENBoT-API. It is very important that you read it from beginning to end. The knowledge and experience
you gain in this tutorial will get you started to writing your own CEENBoT programs that take advantage of the
API. This document is the spring board to programming with the API, so if this is your first time, then this
document is where it all begins. Consequently, it is important that you read this document through to completion.

Requirements

This document assumes you have the following items installed – this document does not walk you through the
installation of these items – you must consult the installation instruction for any respective software. Therefore,
before you begin, you must have the following:

• You need to have installed the latest WinAVR-GCC tool-chain on your system. At the time this document
was being written, you can obtain the WinAVR toolchain here:

http://winavr.sourceforge.net/

• You need to have installed AVR Studio 4 from Atmel. At the time this document was being written, you
can obtain AVR Studio 4 here:

http://www.atmel.com

The software is free, but you have to register and posses a valid e-mail address before you are allowed to
download. Make sure you also download the service pack upgrades.

• You need to download the static library and corresponding header files for the CEENBoT-API and extract
then into a known location in your system .

Presently, you can download the library and header files from the CEENBoT Portal here:

http://ceenbot.digital-brain.info

• It goes without saying – you need your CEENBoT – with the 324 board v2.21 along with a suitable In-
System Programmer (or ISP, or AVR-ISP).

3

http://winavr.sourceforge.net/
http://ceenbot.digital-brain.info/
http://www.atmel.com/

CEENBoT-API: Getting Started Guide (Rev. 1.07)

Document Conventions

This document uses the following typographical conventions:

• Code is written using Lucida Console type font. It is typically shown as follows:

void CBOT_main(void)
{

 // … code here;

} // end CBOT_main()

• Sometimes you'll be instructed to access a particular feature by clicking your way through a set of menus.
For example – take a look at the figure below – it is a screen-shot of a completely unrelated program
called Open Office:

I might describe the above operations using the following notation (without the benefit of the image):

 “Go to the top menu and select:

[[Tools > Language > For Paragraph > English (USA)]]”.

In particular, note how menu-driven directions are enclosed in double square brackets.

• Some panels have buttons, which I will instruct you to click on. For example, the panel below has a
button called New Project:

I might describe the following operation:

“In the “Welcome to AVR Studio 4” panel, click on [New Project].

In particular, note that panel buttons directions are enclosed in single square brackets.

4

University of Nebraska-Lincoln

• In general when I want to attract your attention to an area on a panel or window on the software you're
looking at, I will use courier new type font to describe such an area. It means you should stop
looking at this document and start looking for the specified feature on your computer screen. For
example. in the same above figure I might say, “under Recent projects, blah, blah”, etc.

Comments, Questions and/or Suggestions...

Comments, questions and/or suggestions should be addressed by e-mail to:

ceenbot.api@digital-brain.info

Check out the CEENBoT Portal for latest development news regarding the API:

http://ceenbot.digital-brain.info

5

http://ceenbot.digital-brain.info/

CEENBoT-API: Getting Started Guide (Rev. 1.07)

WARNING: Before You Begin...

Your CEENBoT may have arrived in your hands with a pre-programmed firmware that showcases some
basic functionality. More importantly, this functionality includes power management and battery charging
capability. This capability is NOT yet included in the API. It is very important that you either have a backup, or
have a copy of the original HEX file of the original CEENBoT firmware before you start writing programs with this
API.

At the time this document was being written, the latest firmware can be obtained here:

http://www.ceenbotinc.com/tools/

You need to understand that if you wish to restore your CEENBoT to factory settings – for example, you want to
use the CEENBoT to charge your battery after you've done experimenting with the CEENBoT-API – that you
need to re-flash your CEENBoT with the factory firmware (i.e., the aforementioned HEX file). It is assumed that
the end-user understands how to perform this procedure.

with a that said, the following warnings should be taken seriously.

WARNING

Keep a backup of your original firmware and know how to re-flash your CEENBoT BEFORE
YOU BEGIN EXPERIMENTING WITH THE CEENBoT-API!

Finally, and most importantly:

NO WARRANTY

THIS PROGRAM (“THE CEENBOT API”) or simply (“API”) IS DISTRIBUTED IN THE HOPE
THAT IT WILL BE USEFUL, BUT WITHOUT ANY WARRANTY. IT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW THE AUTHOR WILL BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA AND/OR EQUIPMENT OR
DATA/EQUPMENT BEING RENDERED INACCURATE OR USELESS OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM OR
DEVICEE TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF THE AUTHOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

YOUR USE OF THIS “API” CONSTITUTES YOUR AGREEMENT AND UNDERSTANDING
OF THE 'NO-WARRANTY' CLAUSE.

6

http://www.ceenbotinc.com/tools/
http://www.ceenbotinc.com/tools/

University of Nebraska-Lincoln

Tutorial Description

We begin this tutorial on how to write programs that take advantage of the CEENBoT-API by creating a
simple “Hello, Dolly” application that displays this very same message on the CEENBoT's on-board LCD display.
Remember that if this is your first time using the API, it is important that you complete the tutorial in its entirety.
What you learn from the tutorial will be useful in helping you write your own CEENBoT API-based programs. The
tutorial is divided in several parts.

• Part I: Starting a new project in AVR Studio 4.

• Part II: Configuring and setting up the project options for properly compiling and linking against the static
library.

• Part III: Writing the program and what the proper program structure is for a CEENBoT-API based
program.

• Part IV: Building the program to produce the HEX file that is eventually uploaded to the CEENBoT.

• Part V: Uploading the program to the CEENBoT.

Let us now begin.

Part I: Starting a new Project

1) Start AVR Studio 4.

2) The “Welcome to AVR Studio 4” panel might automatically pop-up; (if it doesn't, select
[[Project > Project Wizard]] via the top menu.)

When the panel shows, click on [New Project] button.

7

CEENBoT-API: Getting Started Guide (Rev. 1.07)

3) The panel will now switch content and under Project Type select AVR GCC. Then for Project
name: enter “HelloDolly” (without quotes). Leave the Create initial file and Create
folder options checked. Also, Initial file: will be automatically filled with the same name as
that you supplied for Project name:. Next, under Location: click on the […] button to select
the destination where the project folder will be created. When you're done, click the [Next >>]
button.

Note: Remember where you create the project folder – its location – you'll need this info later when
we get to uploading your program to the CEENBoT.

4) The panel will switch content once again and under Debug platform: select AVR Simulator,
and under Device: select ATmega324P. Then click the [Finish] button.

At this point your new project has been created. You can always use this procedure for creating a project with the
purpose of being used with the CEENBoT-API. We're now ready to move to Part II.

8

University of Nebraska-Lincoln

Part II: Configuring Project Options

Part I showed you how to start a new Project using the Project Wizard. By now the project folder has
been created with an initial C file, which should be called HelloDolly.c already open for you to start writing
your code in. However, before we proceed, we need to configure the project options.

1) So we start by clicking on [[Project > Configuration Options]] on the top menu – this will
bring up the “HelloDolly Project Options” as shown below:

The current panel being shown is called General. In this panel you must make sure that all
checkboxes are checked ! (as shown in the above figure). If they're not checked, then make sure you
'check' them.

The Device: entry should already say atmega324p (as in the above figure), and Optimization:
should be set to -Os (that's a capital letter O and not zero). If it isn't make sure you select this setting.
Finally, in the Frequency: entry, enter “20000000” (without quotes) since the '324 board runs at
20MHz. Make sure you have the correct number of zeros!

9

CEENBoT-API: Getting Started Guide (Rev. 1.07)

2) Next, click on Include Directories on the left side of this panel. You should see the figure below:

We need to tell AVR Studio (which tells WinAVR-GCC) where to find the header files for the CEENBoT-
API. The header files are the files ending with '.h'. To do this, click on the folder icon. This will add an
empty directory entry. Click on the […] button and find the folder location in your system where you
have placed the header files for the CEENBoT-API and then click OK.

The figure above shows the selected directory (in my system – yours will be different).

10

University of Nebraska-Lincoln

3) We're done with the previous panel. Now click on Libraries. You should see the figure below where
we will perform a similar number of steps as step 2 above. We're now going to tell AVR Studio where to
find the static library, so click on the folder icon – this will create an empty directory entry, then click on the
[…] button and find the folder location in your system where you have placed the library file and click
the OK button.

After having selected the directory, you should see libcapi324v221.a listed under Available
Link Objects: . Select this file and then click on the [Add Library →] button. You should
now see libcapi324v221.a listed under Link with These Objects: category and your
settings should now match the settings shown in the above figure.

Also, while we're here, select libm.a on the left column, and click [Add Library →] once more,
so the right column should now list: libcapi324v221.a and libm.a (this step is not reflected in the
above figure). This is the “math library”, and is needed by some of the sound-generating functions (not
discussed here) so you should always include that in as well so you don't run into problems later on when
you try to use any of those functions.

Note: Linking with the libm.a is a new requirement as of API revision v1.02.000R and up.

11

CEENBoT-API: Getting Started Guide (Rev. 1.07)

4) Now click on Custom Options on the left side of this panel. You should see the figure below:

Now, at this stage there's technically nothing left to do, however, while we're at this panel there's some
things I'd like you to get notice of as you may want to return here and do some 'tweaking'.

First, at the bottom of the panel, under External Tools the Use WinAVR checkbox should be
checked. If you installed WinAVR before you installed AVR Studio 4, paths to avr-gcc.exe and
make.exe should already be selected and automatically set. However, if it just so happens that this did
not happen (for whatever reason), then you can uncheck Use WinAVR and manually point to the folder
where AVR Studio 4 can find avr-gcc.exe and make.exe. So if AVR Studio 4 has problems finding
these programs – this is the place to set up the correct locations.

The second detail I'd like to point out has to do with compilation options for the linker. Go ahead and click
on “[Linker Options]” under Custom Compilation Options. You'll notice once you click it that
the right-side options disappear. That is, we don't have any linker-specific options because, well, we don't
need any. However, a common occurrence is that you'd like to use the printf() family of functions to
print floating point values, which is not supported by default. This is done to save space. The default
printf() implementations avoid taking floating point values to save code space. When you try to print
a floating point value with the default printf() facilities, you'll end up getting question marks “?”
instead.

So, IF you do want to use the printf() facilities with floating point values you enable these feature
as follows. With “[Linker Options]” selected, add -Wl,-u,vfprintf as shown in the next
figure and click on the [Add] button. (see next page).

12

University of Nebraska-Lincoln

We're not done yet... the last step is to switch to the Libraries panel once again and under
Available Link Objects: select libprintf_flt.a and click on [Add Library →] button
(just as you did to add 'libcapi324v221.a'). See the figure below:

13

CEENBoT-API: Getting Started Guide (Rev. 1.07)

Note that you DO NOT need to specify the path to link against libprintf_flt.a as you did with
libcapi324v221.a. These are standard libraries and the linker [should] know how to automatically find
these.

Note: Once again, the procedure outlined in step 4 is optional. Just know this information is here in
case you find yourself needing to use the printf() facilities that support printing of floating point
values.

5) Close the Project Options panel by clicking on the [OK] button.

At this point your configuration options for your project are set. We're ready to code!

14

University of Nebraska-Lincoln

Part III: The “Hello, Dolly” Program

So by now we have our project created, and also properly configured. We can now start to write our
program. Begin by selecting the “HelloDolly.c” file (look for the file listing on the leftmost side of AVR Studio
4). Your file should be empty. In this blank page enter the following code:

// Desc: A 'Hello-Dolly' program that uses the CEENBoT-API.

#include "capi324v221.h"

void CBOT_main(void)

{

// Open and initialize the LCD-subsystem.

LCD_open();

// Clear the LCD.

LCD_clear();

// Print a message.

LCD_printf("Hello, Dolly!\n");

// Don't leave.

while(1);

} // end CBOT_main()

Let's talk about the above program and its structure. The first line of importance is #include “capi324v221.h”.
This is the main header file for your CEENBoT-API program. ALL CEENBoT programs that use the CEENBoT-
API must include this header file!

The next important detail is that you'll notice that 'main()' is missing. Instead, we have 'CBOT_main()'. Once
again, ALL CEENBoT programs that use the CEENBoT-API start in CBOT_main(). If you're missing this function
and instead try to use plain 'main()' you'll end up with compilation errors. Note that CBOT_main() takes no
arguments, nor does it return any.

Let us now talk about the body of the program. The program starts by invoking LCD_open(). This function
acquires and initializes the necessary resources to make use of the LCD subsystem module. Many parts of the
CEENBoT-API work this way. If you want to use the LEDs, you have to open that module; if you want to use the
stepper motors, you have to open the STEPPER module via the appropriate function call, etc. You must consult
the CEENBoT-API reference manual for details on how to use other modules. At the moment our task is on how
to compile a simple program.

Next function calls are self explanatory. LCD_clear() clears the display, and LCD_printf() allows us to print our
“Hello, Dolly!” message on the LCD display.

15

CEENBoT-API: Getting Started Guide (Rev. 1.07)

The last line in our program is the infinite while loop: while(1); Many embedded systems require the MCU to
keep running to respond to other events. Therefore, we keep the program running forever in a while loop so that
it can respond to other events – such as interrupt triggered events.

In any case, that completes our program – let us now compile it, link it, and generate the HEX file.

Part IV: Building the Program

So we've written some test code and we're ready to try it out on the CEENBoT. We do so by building the
program. 'Building' refers to compiling each source file and linking the object files resulting from our source code
against one or more static libraries (such as the CEENBoT-API library) and producing what will ultimately be the
file that will be uploaded to the CEENBoT's main microcontroller. This 'file' that is ultimately uploaded to the
CEENBoT is called a HEX file (because it ends with the .hex extension). A HEX file is simply a format used for
encoding raw binary data – this data consists of machine instructions that will reside in the flash (non-volatile
memory) portion of the MCU.

So... to build our program:

1) On the top menu select [[Build > Compile]].

While AVR Studio 4 invokes the compiler keep an eye on the messages that scroll along the bottom panel
of AVR Studio 4. You might see an error about AVR Studio 4 complaining that there's no 'Makefile'. This
is okay because this is the first time we're compiling our new project. AVR Studio will create the Makefile
in the project folder and you should see this particular error no longer. The line you're really looking for in
the messages at the bottom part of AVR Studio is “Build succeeded with 0 Warnings...”.

2) If your program has errors – analyze the errors (from the error messages given) and attempt to correct
them, particularly if they're syntactic errors which are often the common cause of errors.

3) Provided you've corrected all errors if any select [[Build > Build]].

Once again, if no errors have occurred – the line of importance you're looking for is “Build succeeded
with 0 Warnings...”.

Upon a successful build, AVR Studio 4 (with the help of WinAVR-GCC) will create a HEX file. We will use this
HEX file to flash the raw data to the CEENBoT. Proceed to Part V to do this.

16

University of Nebraska-Lincoln

Part V: Uploading our Program to the CEENBoT

At this point you have written a program that you have successfully built without errors. So now it is time
to upload our program and try it out. Let us begin:

1) Make sure your AVR-ISP (In-System Programmer) is connected to your computer via the appropriate
interface (if USB connect to USB port; if Serial connect to suitable COM port, etc).

Note: The ISP I'm using is the AVR-ISP MkII which connects to a USB port and is shown in the figure
below, but please note there are MANY versions of ISP programmers out there – just make sure it
compatible with AVR Studio 4.

2) Hook up the ISP connector to the CEENBoT's '324 board as shown:

17

CEENBoT-API: Getting Started Guide (Rev. 1.07)

3) While we're here, right above where the ribbon cable connects is a small header with three pins as shown
in the below figure, labeled J2:

Although difficult to see in the above figure, one of the pins is fully exposed, while the remaining two are
not. Next to this 3-pin header are the labels “Tiny” and “Mega”. Your mission – should you choose to
accept it – is to make sure that the two pins next to where it says “Mega” are the ones covered by the
black “Jumper”, while the lower pin, next to where it says “Tiny” remains exposed.

Forgetting to have the jumper (as just described) properly set can be a source of trouble as we try to
access and program the MCU with the AVR-ISP programmer. So, please make sure the Jumper is
[always] set to “Mega”.

18

University of Nebraska-Lincoln

4) Click on the 'AVR' icon (see figure below) to connect to a selected ISP programmer:

If this is the first time you're trying to access your AVR-ISP programmer, then you'll most likely see the
following window to appear: “Select AVR Programmer” (see below). If it does, select your Platform:
and the Port (again, I'm using the AVRISPmkII via USB and hence what is shown in the below figure).

Click the [Connect] button. If connection is successful you should see the panel “AVR … in ISP
mode with ATmega324P” (see next page).

Note: In some instances you might have to keep your CEENBoT turned ON while your AVR-ISP
programmer is attached – so if it isn't already make sure it is turned ON.

19

CEENBoT-API: Getting Started Guide (Rev. 1.07)

DON'T DO ANYTHING JUST YET! Just make sure you're here:

Before we proceed to uploading our program, there's a few things I want you to explore, so proceed to the
next step.

20

University of Nebraska-Lincoln

5) On the top-most portion of the panel, click on the Main Tab.

With the CEENBoT powered ON (and the AVR-ISP programmer attached), click on the [Read Signature]
button. This will read the signature bytes from the microcontroller to make sure you're talking to the
correct device, which in this case is the ATmega324P as listed in this same panel. In addition, performing
a signature read can be used as a 'check' to ensure your ISP programmer and CEENBoT are talking to
each other correctly. Check the messages at the bottom of this panel to ensure everything went OK. If
you cannot read the signature bytes this could signal a potential problem that could be anywhere – your
CEENBoT, your cable, your ISP programmer and you need to check for the obvious.

Note: You're not required to perform step 4. It just merely want you to be aware of a way to 'test
things out' and make sure your setup works.

21

CEENBoT-API: Getting Started Guide (Rev. 1.07)

6) THIS STEP IS IMPORTANT! If, this is your first time programming the CEENBoT with the API, then you
need to click on the Fuses Tab (see figure below):

In this panel the ONLY TWO options that should be selected (or checked) should be SPIEN and
CKDIV8. Make sure CKDIV8 is checked . Finally, make sure SUT_CKSEL is set to “Full Swing
Oscillator; Start-up time: 258CK+65ms; Ceramic res.; Slowly rising.”.

When you have verified these settings to be correct, click the [Program] button. Take a look at the
messages on the bottom portion of the panel and make sure everything went OK (no errors).

Do quick 'verify' by clicking on the [Verify] button to double-check. Once again ensure there are no
error messages.

Note: You only need to program the Fuses once. The fuse settings remain programmed in the chip
until you explicitly change them again. Just know how to do it (and check them) in any case.

22

University of Nebraska-Lincoln

7) We're now ready to program! Switch to the Program Tab (see figure below):

First make sure that Erase device before flash programming and Verify device after
programmer have check marks on them. Then in the Flash section select Input HEX File (if it
isn't already selected) and click on the […] button to find the HEX file you just created in the build
stage. This file is located in <your-project-folder>/default, where <your-project-folder>
is the path you specified when you created this project in the first place. The figure above shows my HEX
file called “HelloDolly.hex” after I've selected it.

8) With the CEENBoT powered ON (it should have been ON all this time), click the [Program] button.

Wait for the progress bar to complete. AVR Studio 4 will, upon completion, read back the uploaded
program data to verify it got there and it matches the original – you DO NOT need to click on the verify
button as the check marked option in this panel ensures this happens automatically as part of the
programming process. Once the program is fully uploaded your CEENBoT will most likely automatically
RESET and immediately start executing your program, at which point you should see the following
amazing result (see next page):

23

CEENBoT-API: Getting Started Guide (Rev. 1.07)

Here's a close up:

Congratulations! – you've successfully created your first CEENBoT-API based program. Now please
continue to the next section “Additional Notes” – it is important.

24

University of Nebraska-Lincoln

Additional Notes

• Always make sure your CEENBoT is powered ON when you access the programming panel either via the
Main Tab (to read MCU signature bytes), the Program Tab (to program it), or the Fuses Tab (to
program/view state of the fuses).

• Once again, step 4 in Part V (where we read the MCU signature bytes) is optional. It is helpful to ensure
the your setup is good and that communication exists between the ISP programmer and the CEENBoT
(and its MCU). Usually when you open the panel that allows you to program you can go straight to the
Program Tab and get straight to business.

• Step 5 in Part V also (fuse programming and verification) is required only once. Once the fuses are
properly programmed, the fuse settings are retained by the MCU. In fact, every time you switch to the
Fuses Tab when the CEENBoT is powered ON, the current fuse settings will be read . This is a good
way to verify the fuse settings are as they're supposed to be. In any case, once the fuses are properly
programmed you can just jump straight to the Program Tab and get straight to business.

• If while you're attempting to access the programming panel you encounter the following:

It most likely means your CEENBoT isn't powered. Remember you HAVE to have it powered ON for AVR
Studio 4 to communicate and/or program the MCU. If this isn't the case, then you may have another
issue: cable not connected correctly, bad ISP connector, bad '324 board, your AVR-ISP is not recognized
by your system because you may have incorrectly installed the corresponding drivers, etc – it could be
anything!

• If your CEENBoT program requires your 'BoT to move – then it's a good idea to make sure your
CEENBoT's wheels are elevated from the surface somehow. Every time you upload your program to your
CEENBoT, the program is immediately executed. If that program also makes your CEENBoT move, then
your 'BoT is going to get away from you, with programmer cables attached and all! If you happen to be
working on an elevated desk, your CEENBoT will run off it and you'll have yourself a broken CEENBoT.
So make sure your CEENBoT's wheels are elevated from any surface for SAFETY!

Okay, What Next?

Now that you've completed the tutorial and can successfully create your own CEENBoT programs that
use the API, you'll want to check out the CEENBoT-API: Programmer's Reference Guide. It discusses all the
features of the API in a module-per-module basis and the supported functions that you can call to use those
features.

25

CEENBoT-API: Getting Started Guide (Rev. 1.07)

26

